Driving Style Classification Using a Semisupervised Support Vector Machine
Supervised learning approaches are widely used for driving style classification; however, they often require a large amount of labeled training data, which is usually scarce in a real-world setting. Moreover, it is time-consuming to manually label huge amounts of driving data due to uncertainties of...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on human-machine systems 2017-10, Vol.47 (5), p.650-660 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Supervised learning approaches are widely used for driving style classification; however, they often require a large amount of labeled training data, which is usually scarce in a real-world setting. Moreover, it is time-consuming to manually label huge amounts of driving data due to uncertainties of driver behavior and variances among the data analysts. To address this problem, a semisupervised approach, a semisupervised support vector machine (S3VM), is employed to classify drivers into aggressive and normal styles based on a few labeled data points. First, a few data clusters are selected and manually labeled using a k-means clustering method. Then, a specific differentiable surrogate of a loss function is developed, which makes it feasible to use standard optimization tools to solve the nonconvex optimization problem. One of the most popular quasi-Newton algorithms is then used to assign the optimal label to all of the training data. Finally, we compare the S3VM method with a support vector machine method for classifying driving styles from different amounts of labeled data. Experiments show that the S3VM method can improve the classification accuracy by about 10% and reduce the labeling effort by using only a few labeled data clusters among huge amounts of unlabeled data. |
---|---|
ISSN: | 2168-2291 2168-2305 |
DOI: | 10.1109/THMS.2017.2736948 |