Human Velocity Control of Admittance-Type Robotic Devices With Scaled Visual Feedback of Device Motion
An admittance-type robotic manipulator is a nonbackdrivable device whose motion is controlled to move in response to a user-applied force, typically with velocity proportional to force. This study characterizes the ability of ten human subjects to accurately and precisely control the velocity of suc...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on human-machine systems 2016-12, Vol.46 (6), p.859-868 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An admittance-type robotic manipulator is a nonbackdrivable device whose motion is controlled to move in response to a user-applied force, typically with velocity proportional to force. This study characterizes the ability of ten human subjects to accurately and precisely control the velocity of such a device, using force applied by the index finger, as the user is provided visual feedback of device motion and a target velocity on a display. The admittance, the velocity, and the visualization scale factor are varied in a full factorial design, with parameter levels representative of microsurgery/micromanipulation tasks. The results indicate that: visual scaling has no effect, for the levels tested; low velocity at high admittance results in reduced precision and accuracy; high velocity at low admittance results in reduced accuracy; and an admittance-dependent velocity exists at which accuracy is maximized. The results suggest that gain scheduling will result in improved performance. |
---|---|
ISSN: | 2168-2291 2168-2305 |
DOI: | 10.1109/THMS.2016.2599493 |