SEN12MS-CR-TS: A Remote-Sensing Data Set for Multimodal Multitemporal Cloud Removal

About half of all optical observations collected via spaceborne satellites are affected by haze or clouds. Consequently, cloud coverage affects the remote-sensing practitioner's capabilities of a continuous and seamless monitoring of our planet. This work addresses the challenge of optical sate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-14
Hauptverfasser: Ebel, Patrick, Xu, Yajin, Schmitt, Michael, Zhu, Xiao Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:About half of all optical observations collected via spaceborne satellites are affected by haze or clouds. Consequently, cloud coverage affects the remote-sensing practitioner's capabilities of a continuous and seamless monitoring of our planet. This work addresses the challenge of optical satellite image reconstruction and cloud removal by proposing a novel multimodal and multitemporal data set called SEN12MS-CR-TS. We propose two models highlighting the benefits and use cases of SEN12MS-CR-TS: First, a multimodal multitemporal 3-D convolution neural network that predicts a cloud-free image from a sequence of cloudy optical and radar images. Second, a sequence-to-sequence translation model that predicts a cloud-free time series from a cloud-covered time series. Both approaches are evaluated experimentally, with their respective models trained and tested on SEN12MS-CR-TS. The conducted experiments highlight the contribution of our data set to the remote-sensing community as well as the benefits of multimodal and multitemporal information to reconstruct noisy information. Our data set is available at https://patrickTUM.github.io/cloud_removal .
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2022.3146246