Orthogonal Subspace Projection-Based Go-Decomposition Approach to Finding Low-Rank and Sparsity Matrices for Hyperspectral Anomaly Detection
Low-rank and sparsity-matrix decomposition (LRaSMD) has received considerable interests lately. One of effective methods for LRaSMD is called go decomposition (GoDec), which finds low-rank and sparse matrices iteratively subject to the predetermined low-rank matrix order m and sparsity cardinality...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2021-03, Vol.59 (3), p.2403-2429 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Low-rank and sparsity-matrix decomposition (LRaSMD) has received considerable interests lately. One of effective methods for LRaSMD is called go decomposition (GoDec), which finds low-rank and sparse matrices iteratively subject to the predetermined low-rank matrix order m and sparsity cardinality k . This article presents an orthogonal subspace-projection (OSP) version of GoDec to be called OSP-GoDec, which implements GoDec in an iterative process by a sequence of OSPs to find desired low-rank and sparse matrices. In order to resolve the issues of empirically determining p = m+ j and k , the well-known virtual dimensionality (VD) is used to estimate p in conjunction with the Kuybeda et al. developed minimax-singular value decomposition (MX-SVD) in the maximum orthogonal complement algorithm (MOCA) to estimate k . Consequently, LRaSMD can be realized by implementing OSP-GoDec using p and k determined by VD and MX-SVD, respectively. Its application to anomaly detection demonstrates that the proposed OSP-GoDec coupled with VD and MX-SVD performs very effectively and better than the commonly used LRaSMD-based anomaly detectors. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2020.3002724 |