Novel Adaptive Histogram Trend Similarity Approach for Land Cover Change Detection by Using Bitemporal Very-High-Resolution Remote Sensing Images

Detecting land cover change through very-high-resolution (VHR) remote sensing images is helpful in supporting urban sustainable development, natural disaster evaluation, and environmental assessment. However, the intraclass spectral variance in VHR remote sensing images is usually larger than that o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2019-12, Vol.57 (12), p.9554-9574
Hauptverfasser: Lv, Zhi Yong, Liu, Tong Fei, Zhang, Penglin, Benediktsson, Jon Atli, Lei, Tao, Zhang, Xiaokang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Detecting land cover change through very-high-resolution (VHR) remote sensing images is helpful in supporting urban sustainable development, natural disaster evaluation, and environmental assessment. However, the intraclass spectral variance in VHR remote sensing images is usually larger than that of median-low remote sensing images. Furthermore, the bitemporal images are usually acquired under different atmospheric conditions, sun height, soil moisture, and other factors. Consequently, in practical applications, many pseudo changes are presented in the detected map. In this paper, an adaptive histogram trend (AHT) similarity approach is promoted to quantitatively measure the magnitude between the corresponding pixels in bitemporal images in terms of change semantic. In the proposed approach, to reduce the phenological effect on the bitemporal images of land cover change detection (LCCD), we first define the quantitative description of AHT. Second, the change magnitudes between pairwise pixels are quantitatively measured by an improved bin-to-bin (B2B) distance between the corresponding AHTs. Then, the change magnitudes between two entire bitemporal images are measured AHT-by-AHT. Finally, binary threshold methods, such as the Otsu method or the double-window flexible pace search (DFPS) method, are used to divide the change magnitude image into binary change detection maps and obtain the final change detection map. The performance of the AHT-based LCCD approach is verified by four pairs of VHR remote-sensing images that correspond to two types of real land cover change cases. The detected results based on the four pairs of bitemporal VHR images outperformed the compared state-of-the-art LCCD methods.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2019.2927659