Simultaneous Mapping of Coastal Topography and Bathymetry From a Lightweight Multicamera UAS

A low-cost multicamera Unmanned Aircraft System (UAS) is used to simultaneously estimate open-coast topography and bathymetry from a single longitudinal coastal flight. The UAS combines nadir and oblique imagery to create a wide field of view (FOV), which enables collection of mobile, long dwell tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2019-09, Vol.57 (9), p.6844-6864
Hauptverfasser: Brodie, Katherine L., Bruder, Brittany L., Slocum, Richard K., Spore, Nicholas J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A low-cost multicamera Unmanned Aircraft System (UAS) is used to simultaneously estimate open-coast topography and bathymetry from a single longitudinal coastal flight. The UAS combines nadir and oblique imagery to create a wide field of view (FOV), which enables collection of mobile, long dwell timeseries of the littoral zone suitable for structure-from-motion (SfM), and wave speed inversion algorithms. Resultant digital surface models (DSMs) compare well with terrestrial topographic lidar and bathymetric survey data at Duck, NC, USA, with roor-mean-square error (RMSE)/bias of 0.26/-0.05 and 0.34/-0.05 m, respectively. Bathymetric data from another flight at Virginia Beach, VA, USA, demonstrates successful comparison (RMSE/bias of 0.17/0.06 m) in a secondary environment. UAS-derived engineering data products, total volume profiles and shoreline position, were congruent with those calculated from traditional topo-bathymetric surveys at Duck. Capturing both topography and bathymetry within a single flight, the presented multicamera system is more efficient than data acquisition with a single camera UAS; this advantage grows for longer stretches of coastline (10 km). Efficiency increases further with an on-board Global Navigation Satellite System-Inertial Navigation System (GNSS-INS) to eliminate ground control point (GCP) placement. The Appendix reprocesses the Virginia Beach flight with the GNSS-INS input and no GCPs. The resultant DSM products are comparable [root-mean-squared difference (RMSD)/bias of 0.62/−0.09 m, and processing time is significantly reduced.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2019.2909026