Practical Multichannel SAR Imaging in the Maritime Environment
The U.S. Naval Research Laboratory (NRL) recently developed an X-band airborne multichannel synthetic aperture radar (MSAR) test bed system that consists of 32 along-track phase centers. This system was deployed in September 2014 and again in October 2015 to perform extensive and systematic data col...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2018-07, Vol.56 (7), p.4025-4036 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The U.S. Naval Research Laboratory (NRL) recently developed an X-band airborne multichannel synthetic aperture radar (MSAR) test bed system that consists of 32 along-track phase centers. This system was deployed in September 2014 and again in October 2015 to perform extensive and systematic data collections on a variety of land and maritime scenes under different environmental conditions. This paper presents a detailed experimental analysis of imaging in the maritime domain using data captured by the NRL MSAR system. After presenting some of the important details of our NRL MSAR system, we demonstrate velocity-based imaging of a variety of moving backscatter sources including ships and shoaling ocean waves. Our analysis is based on the velocity SAR (VSAR) technique, which was originally conceived by Friedlander and Porat. Practical application of this algorithm in the maritime domain requires a number of pre- and postprocessing stages, which are described here in detail. Our results are then benchmarked against the traditional along-track interferometry, where it is demonstrated that VSAR processing is better able to correctly compensate motion-induced distortion. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2018.2820911 |