Validation of SMOS Data Over Agricultural and Boreal Forest Areas in Canada

This study was conducted as part of the Soil Moisture and Ocean Salinity (SMOS) calibration and validation activities over agricultural and boreal forest sites located in Saskatchewan, Canada. For each site covering 33 km × 71 km (i.e., about two SMOS pixels), we examined the SMOS brightness tempera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2012-05, Vol.50 (5), p.1623-1635
Hauptverfasser: Gherboudj, I., Magagi, R., Goita, K., Berg, A. A., Toth, B., Walker, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study was conducted as part of the Soil Moisture and Ocean Salinity (SMOS) calibration and validation activities over agricultural and boreal forest sites located in Saskatchewan, Canada. For each site covering 33 km × 71 km (i.e., about two SMOS pixels), we examined the SMOS brightness temperature (L1c) and soil moisture (L2) products from May 1 to September 30, 2010. The consistency of these data with respect to theory and to the temporal variation of surface characteristics was first discussed at both sites. Then, the SMOS L1c (prototype 346) and L2 (prototypes 305-309) products were evaluated using the Canadian Experiment for Soil Moisture in 2010 (CanEx-SM10) ground measurements and L-band passive microwave airborne measurements, in addition to AMSR-E soil moisture estimates and simulations from the zeroth order τ- ω radiative transfer model. For both study sites, the model underestimated SMOS brightness temperatures in V polarization, whereas an overestimation was observed in H polarization. The data sets showed that both the SMOS and AMSR-E soil moisture values were underestimated compared with ground measurements collected during CanEx-SM10 but less so for the AMSR-E estimates. The SMOS soil moisture product was underestimated with a RMSE varying from 0.15 to 0.18 m 3 / m 3 . Furthermore, the overall results showed that errors in the soil moisture estimates increased with the absolute value of soil moisture.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2012.2188532