Two Novel Bayesian Multiscale Approaches for Speckle Suppression in SAR Images
Speckle suppression is a prerequisite for many synthetic aperture radar (SAR) image-processing tasks. Previously, we introduced a Bayesian-based speckle-suppression method that employed the 2-D generalized autoregressive conditional heteroscedasticity (2D-GARCH) model for wavelet coefficients of log...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2010-07, Vol.48 (7), p.2980-2993 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Speckle suppression is a prerequisite for many synthetic aperture radar (SAR) image-processing tasks. Previously, we introduced a Bayesian-based speckle-suppression method that employed the 2-D generalized autoregressive conditional heteroscedasticity (2D-GARCH) model for wavelet coefficients of log-transformed SAR images. Based on this method, we propose two new Bayesian speckle-suppression approaches in this paper. In the first approach, we introduce a new heteroscedastic model, i.e., the 2D-GARCH Mixture (2D-GARCH-M) model, as an extension of the 2D-GARCH model. This new model can capture the characteristics of wavelet coefficients. Also, the 2D-GARCH-M model introduces additional flexibility in the model formulation in comparison with the 2D-GARCH model, which results in better characterization of SAR image subbands and improved restoration in noisy environments. Then, we design a Bayesian estimator for estimating the clean-image wavelet coefficients based on 2D-GARCH-M modeling. In the second approach, the logarithm of an image is analyzed by means of the curvelet transform instead of wavelet transform. Then, we study the statistical properties of curvelet coefficients, and we demonstrate that the 2D-GARCH model can capture the characteristics of curvelet coefficients, such as heavy tailed marginal distribution, and the dependences among them. Consequently, under the 2D-GARCH model, we design a Bayesian estimator for estimating the clean-image curvelet coefficients. Finally, we compare these methods with other denoising methods applied on artificially speckled and actual SAR images, and we verify the performance improvement in utilizing the new strategies. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2010.2041552 |