Analysis of Ground-Based SAR Data With Diverse Temporal Baselines

In this paper, the algorithms developed for satellite synthetic aperture radar (SAR) interferometry were adapted to the ground-based SAR (GB-SAR) configuration and used for detecting the displacements of an alpine landslide which have occurred over many years. Indeed GB-SAR interferometry is based o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2008-06, Vol.46 (6), p.1614-1623
Hauptverfasser: Noferini, L., Takayama, T., Pieraccini, M., Mecatti, D., Macaluso, G., Luzi, G., Atzeni, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the algorithms developed for satellite synthetic aperture radar (SAR) interferometry were adapted to the ground-based SAR (GB-SAR) configuration and used for detecting the displacements of an alpine landslide which have occurred over many years. Indeed GB-SAR interferometry is based on the same principles as satellite SAR techniques but benefits from the GB-SAR's versatility and capability of gathering many images per day. In monitoring applications of landslides moving only few centimeters per year, as the case here reported, the GB-SAR sensor is installed at repeated intervals several months apart over the observation period. Although the revisiting time is very similar to the satellite one, for each survey, lasting two or three days, more than ten images are available. They are analyzed separately and in combination with images from other surveys for coherent pixel selection. Interferograms are formed by cross-combining images from different surveys. Finally, the evolution of the deformation across the surveys is retrieved in a least square sense without any assumptions on its regularity. The used GB-SAR technique is described in detail in this paper, and the results obtained with regard to a landslide in the Italian Alps that has been monitored over a period of about three years are discussed.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2008.916216