Dimensionality Reduction Based on Clonal Selection for Hyperspectral Imagery

A new stochastic search strategy inspired by the clonal selection theory in an artificial immune system is proposed for dimensionality reduction of hyperspectral remote-sensing imagery. The clonal selection theory is employed to describe the basic features of an immune response to an antigenic stimu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2007-12, Vol.45 (12), p.4172-4186
Hauptverfasser: Zhang, Liangpei, Zhong, Yanfei, Huang, Bo, Gong, Jianya, Li, Pingxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new stochastic search strategy inspired by the clonal selection theory in an artificial immune system is proposed for dimensionality reduction of hyperspectral remote-sensing imagery. The clonal selection theory is employed to describe the basic features of an immune response to an antigenic stimulus in order to meet the requirement of diversity in the antibody population. In our proposed strategy, dimensionality reduction is formulated as an optimization problem that searches an optimum with less number of features in a feature space. In line with this novel strategy, a feature subset search algorithm, clonal selection Feature-Selection (CSFS) algorithm, and a feature-weighting algorithm, Clonal-Selection Feature-Weighting (CSFW) algorithm, have been developed. In the CSFS, each solution is evolved in binary space, and the value of each bit is either 0 or 1, which indicates that the corresponding feature is either removed or selected, respectively. In CSFW, each antibody is directly represented by a string consisting of integer numbers and their corresponding weights. These algorithms are compared with the following four well-known algorithms: sequential forward selection, sequential forward floating selection, genetic-algorithm-based feature selection, and decision-boundary feature extraction using the hyperspectral remote-sensing imagery acquired by the Pushbroom Hyperspectral Imager and the Airborne Visible/Infrared Imaging Spectrometer, respectively. Experimental results demonstrate that CSFS and CSFW outperform other algorithms and hence provide effective new options for dimensionality reduction of hyperspectral remote-sensing imagery.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2007.905311