Landsat ETM+ and SAR image fusion based on generalized intensity Modulation

This work presents a novel multisensor image fusion algorithm, which extends panchrmomatic sharpening of multispectral (MS) data through intensity modulation to the integration of MS and synthetic aperture radar (SAR) imagery. The method relies on SAR texture, extracted by ratioing the despeckled SA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2004-12, Vol.42 (12), p.2832-2839
Hauptverfasser: Alparone, L., Baronti, S., Garzelli, A., Nencini, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work presents a novel multisensor image fusion algorithm, which extends panchrmomatic sharpening of multispectral (MS) data through intensity modulation to the integration of MS and synthetic aperture radar (SAR) imagery. The method relies on SAR texture, extracted by ratioing the despeckled SAR image to its low-pass approximation. SAR texture is used to modulate the generalized intensity (GI) of the MS image, which is given by a linear transform extending intensity-hue-saturation transform to an arbitrary number of bands. Before modulation, the GI is enhanced by injection of high-pass details extracted from the available panchrmomatic image by means of the "a/spl grave/-trous" wavelet decomposition. The texture-modulated panchrmomatic-sharpened GI replaces the GI calculated from the resampled original MS data. Then, the inverse transform is applied to obtain the fusion product. Experimental results are presented on Landsat-7 Enhanced Thematic Mapper Plus and European Remote Sensing 2 satellite images of an urban area. The results demonstrate accurate spectral preservation on vegetated regions, bare soil, and also on textured areas (buildings and road network) where SAR texture information enhances the fusion product, which can be usefully applied for both visual analysis and classification purposes.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2004.838344