An organizational coevolutionary algorithm for classification

Taking inspiration from the interacting process among organizations in human societies, a new classification algorithm, organizational coevolutionary algorithm for classification (OCEC), is proposed with the intrinsic properties of classification in mind. The main difference between OCEC and the ava...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 2006-02, Vol.10 (1), p.67-80
Hauptverfasser: Licheng Jiao, Licheng Jiao, Jing Liu, Jing Liu, Weicai Zhong, Weicai Zhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Taking inspiration from the interacting process among organizations in human societies, a new classification algorithm, organizational coevolutionary algorithm for classification (OCEC), is proposed with the intrinsic properties of classification in mind. The main difference between OCEC and the available classification approaches based on evolutionary algorithms (EAs) is its use of a bottom-up search mechanism. OCEC causes the evolution of sets of examples, and at the end of the evolutionary process, extracts rules from these sets. These sets of examples form organizations. Because organizations are different from the individuals in traditional EAs, three evolutionary operators and a selection mechanism are devised for realizing the evolutionary operations performed on organizations. This method can avoid generating meaningless rules during the evolutionary process. An evolutionary method is also devised for determining the significance of each attribute, on the basis of which, the fitness function for organizations is defined. In experiments, the effectiveness of OCEC is first evaluated by multiplexer problems. Then, OCEC is compared with several well-known classification algorithms on 12 benchmarks from the UCI repository datasets and multiplexer problems. Moreover, OCEC is applied to a practical case, radar target recognition problems. All results show that OCEC achieves a higher predictive accuracy and a lower computational cost. Finally, the scalability of OCEC is studied on synthetic datasets. The number of training examples increases from 100 000 to 10 million, and the number of attributes increases from 9 to 400. The results show that OCEC obtains a good scalability.
ISSN:1089-778X
1941-0026
DOI:10.1109/TEVC.2005.856068