Far-Field Prediction Using Only Magnetic Near-Field Scanning for EMI Test
Far-field prediction for electromagnetic interference (EMI) testing is achieved using only magnetic near-field on a Huygens's surface. The electrical field on the Huygens's surface is calculated from the magnetic near-field using the finite element method (FEM). Two examples are used to ve...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electromagnetic compatibility 2014-12, Vol.56 (6), p.1335-1343 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1343 |
---|---|
container_issue | 6 |
container_start_page | 1335 |
container_title | IEEE transactions on electromagnetic compatibility |
container_volume | 56 |
creator | Xu Gao Jun Fan Yaojiang Zhang Kajbaf, Hamed Pommerenke, David |
description | Far-field prediction for electromagnetic interference (EMI) testing is achieved using only magnetic near-field on a Huygens's surface. The electrical field on the Huygens's surface is calculated from the magnetic near-field using the finite element method (FEM). Two examples are used to verify the proposed method. The first example uses the field radiated by an infinitesimal electric dipole. The calculated results are compared with the analytical solution. In the second example, the calculated results are compared with full-wave simulation results for the radiation of a print circuit board (PCB). The validity of this method when the near-field is high-impedance field is verified as well. Sensitivity of the far field to noise in both magnitude and phase in the near-field data is also investigated. The results indicate that the proposed method is very robust to the random variation of both. The effect of using only four sides of the Huygens's box is investigated as well, revealing that, in some instances, the incomplete Huygens's box can be used to predict the far field well. The proposed method is validated using near-field measurement data taken from a sleeve dipole antenna. The error for the maximum far-field value is in only 1.3 dB. |
doi_str_mv | 10.1109/TEMC.2014.2322081 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEMC_2014_2322081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6819460</ieee_id><sourcerecordid>1651396043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-e53a78f51d5f03693ac542ca376618b64328b8c6469c1933514fea4a8f8bde8c3</originalsourceid><addsrcrecordid>eNpd0MtqAjEUBuBQWqi1fYDSzUA33YzNyc1kWURbQWuhCt2FmMlIZMzYZFz49p1BcdHV4cB3LvwIPQIeAGD1uhzPRwOCgQ0IJQRLuEI94FzmIIc_16iHMchc0SG_RXcpbduWcUJ7aDoxMZ94VxXZV3SFt42vQ7ZKPmyyRaiO2dxsgmu8zT7dRX5bE0Inyjpm4_k0W7rU3KOb0lTJPZxrH60m4-XoI58t3qejt1lumSBN7jg1Q1lyKHiJqVDUWM6INXQoBMi1YJTItbSCCWVBUcqBlc4wI0u5Lpy0tI9eTnv3sf49tIf1zifrqsoEVx-SBsGBKoEZbenzP7qtDzG037WKKiIU4bxVcFI21ilFV-p99DsTjxqw7sLVXbi6C1efw21nnk4z3jl38UKCYgLTP56kcq4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1639269255</pqid></control><display><type>article</type><title>Far-Field Prediction Using Only Magnetic Near-Field Scanning for EMI Test</title><source>IEEE Electronic Library (IEL)</source><creator>Xu Gao ; Jun Fan ; Yaojiang Zhang ; Kajbaf, Hamed ; Pommerenke, David</creator><creatorcontrib>Xu Gao ; Jun Fan ; Yaojiang Zhang ; Kajbaf, Hamed ; Pommerenke, David</creatorcontrib><description>Far-field prediction for electromagnetic interference (EMI) testing is achieved using only magnetic near-field on a Huygens's surface. The electrical field on the Huygens's surface is calculated from the magnetic near-field using the finite element method (FEM). Two examples are used to verify the proposed method. The first example uses the field radiated by an infinitesimal electric dipole. The calculated results are compared with the analytical solution. In the second example, the calculated results are compared with full-wave simulation results for the radiation of a print circuit board (PCB). The validity of this method when the near-field is high-impedance field is verified as well. Sensitivity of the far field to noise in both magnitude and phase in the near-field data is also investigated. The results indicate that the proposed method is very robust to the random variation of both. The effect of using only four sides of the Huygens's box is investigated as well, revealing that, in some instances, the incomplete Huygens's box can be used to predict the far field well. The proposed method is validated using near-field measurement data taken from a sleeve dipole antenna. The error for the maximum far-field value is in only 1.3 dB.</description><identifier>ISSN: 0018-9375</identifier><identifier>EISSN: 1558-187X</identifier><identifier>DOI: 10.1109/TEMC.2014.2322081</identifier><identifier>CODEN: IEMCAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuit boards ; Computer simulation ; Electric dipoles ; Electromagnetic compatibility ; Electromagnetic interference ; Electromagnetic interference (EMI) ; equivalence theorem ; Far fields ; Finite element analysis ; Finite element method ; finite element methods (FEMs) ; magnetic fields ; Magnetic resonance imaging ; Mathematical analysis ; near-field-far-field transformation ; Noise measurement ; Surface impedance</subject><ispartof>IEEE transactions on electromagnetic compatibility, 2014-12, Vol.56 (6), p.1335-1343</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-e53a78f51d5f03693ac542ca376618b64328b8c6469c1933514fea4a8f8bde8c3</citedby><cites>FETCH-LOGICAL-c462t-e53a78f51d5f03693ac542ca376618b64328b8c6469c1933514fea4a8f8bde8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6819460$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6819460$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu Gao</creatorcontrib><creatorcontrib>Jun Fan</creatorcontrib><creatorcontrib>Yaojiang Zhang</creatorcontrib><creatorcontrib>Kajbaf, Hamed</creatorcontrib><creatorcontrib>Pommerenke, David</creatorcontrib><title>Far-Field Prediction Using Only Magnetic Near-Field Scanning for EMI Test</title><title>IEEE transactions on electromagnetic compatibility</title><addtitle>TEMC</addtitle><description>Far-field prediction for electromagnetic interference (EMI) testing is achieved using only magnetic near-field on a Huygens's surface. The electrical field on the Huygens's surface is calculated from the magnetic near-field using the finite element method (FEM). Two examples are used to verify the proposed method. The first example uses the field radiated by an infinitesimal electric dipole. The calculated results are compared with the analytical solution. In the second example, the calculated results are compared with full-wave simulation results for the radiation of a print circuit board (PCB). The validity of this method when the near-field is high-impedance field is verified as well. Sensitivity of the far field to noise in both magnitude and phase in the near-field data is also investigated. The results indicate that the proposed method is very robust to the random variation of both. The effect of using only four sides of the Huygens's box is investigated as well, revealing that, in some instances, the incomplete Huygens's box can be used to predict the far field well. The proposed method is validated using near-field measurement data taken from a sleeve dipole antenna. The error for the maximum far-field value is in only 1.3 dB.</description><subject>Circuit boards</subject><subject>Computer simulation</subject><subject>Electric dipoles</subject><subject>Electromagnetic compatibility</subject><subject>Electromagnetic interference</subject><subject>Electromagnetic interference (EMI)</subject><subject>equivalence theorem</subject><subject>Far fields</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>finite element methods (FEMs)</subject><subject>magnetic fields</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical analysis</subject><subject>near-field-far-field transformation</subject><subject>Noise measurement</subject><subject>Surface impedance</subject><issn>0018-9375</issn><issn>1558-187X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0MtqAjEUBuBQWqi1fYDSzUA33YzNyc1kWURbQWuhCt2FmMlIZMzYZFz49p1BcdHV4cB3LvwIPQIeAGD1uhzPRwOCgQ0IJQRLuEI94FzmIIc_16iHMchc0SG_RXcpbduWcUJ7aDoxMZ94VxXZV3SFt42vQ7ZKPmyyRaiO2dxsgmu8zT7dRX5bE0Inyjpm4_k0W7rU3KOb0lTJPZxrH60m4-XoI58t3qejt1lumSBN7jg1Q1lyKHiJqVDUWM6INXQoBMi1YJTItbSCCWVBUcqBlc4wI0u5Lpy0tI9eTnv3sf49tIf1zifrqsoEVx-SBsGBKoEZbenzP7qtDzG037WKKiIU4bxVcFI21ilFV-p99DsTjxqw7sLVXbi6C1efw21nnk4z3jl38UKCYgLTP56kcq4</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Xu Gao</creator><creator>Jun Fan</creator><creator>Yaojiang Zhang</creator><creator>Kajbaf, Hamed</creator><creator>Pommerenke, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20141201</creationdate><title>Far-Field Prediction Using Only Magnetic Near-Field Scanning for EMI Test</title><author>Xu Gao ; Jun Fan ; Yaojiang Zhang ; Kajbaf, Hamed ; Pommerenke, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-e53a78f51d5f03693ac542ca376618b64328b8c6469c1933514fea4a8f8bde8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Circuit boards</topic><topic>Computer simulation</topic><topic>Electric dipoles</topic><topic>Electromagnetic compatibility</topic><topic>Electromagnetic interference</topic><topic>Electromagnetic interference (EMI)</topic><topic>equivalence theorem</topic><topic>Far fields</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>finite element methods (FEMs)</topic><topic>magnetic fields</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical analysis</topic><topic>near-field-far-field transformation</topic><topic>Noise measurement</topic><topic>Surface impedance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu Gao</creatorcontrib><creatorcontrib>Jun Fan</creatorcontrib><creatorcontrib>Yaojiang Zhang</creatorcontrib><creatorcontrib>Kajbaf, Hamed</creatorcontrib><creatorcontrib>Pommerenke, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electromagnetic compatibility</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu Gao</au><au>Jun Fan</au><au>Yaojiang Zhang</au><au>Kajbaf, Hamed</au><au>Pommerenke, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Far-Field Prediction Using Only Magnetic Near-Field Scanning for EMI Test</atitle><jtitle>IEEE transactions on electromagnetic compatibility</jtitle><stitle>TEMC</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>56</volume><issue>6</issue><spage>1335</spage><epage>1343</epage><pages>1335-1343</pages><issn>0018-9375</issn><eissn>1558-187X</eissn><coden>IEMCAE</coden><abstract>Far-field prediction for electromagnetic interference (EMI) testing is achieved using only magnetic near-field on a Huygens's surface. The electrical field on the Huygens's surface is calculated from the magnetic near-field using the finite element method (FEM). Two examples are used to verify the proposed method. The first example uses the field radiated by an infinitesimal electric dipole. The calculated results are compared with the analytical solution. In the second example, the calculated results are compared with full-wave simulation results for the radiation of a print circuit board (PCB). The validity of this method when the near-field is high-impedance field is verified as well. Sensitivity of the far field to noise in both magnitude and phase in the near-field data is also investigated. The results indicate that the proposed method is very robust to the random variation of both. The effect of using only four sides of the Huygens's box is investigated as well, revealing that, in some instances, the incomplete Huygens's box can be used to predict the far field well. The proposed method is validated using near-field measurement data taken from a sleeve dipole antenna. The error for the maximum far-field value is in only 1.3 dB.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEMC.2014.2322081</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9375 |
ispartof | IEEE transactions on electromagnetic compatibility, 2014-12, Vol.56 (6), p.1335-1343 |
issn | 0018-9375 1558-187X |
language | eng |
recordid | cdi_crossref_primary_10_1109_TEMC_2014_2322081 |
source | IEEE Electronic Library (IEL) |
subjects | Circuit boards Computer simulation Electric dipoles Electromagnetic compatibility Electromagnetic interference Electromagnetic interference (EMI) equivalence theorem Far fields Finite element analysis Finite element method finite element methods (FEMs) magnetic fields Magnetic resonance imaging Mathematical analysis near-field-far-field transformation Noise measurement Surface impedance |
title | Far-Field Prediction Using Only Magnetic Near-Field Scanning for EMI Test |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A02%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Far-Field%20Prediction%20Using%20Only%20Magnetic%20Near-Field%20Scanning%20for%20EMI%20Test&rft.jtitle=IEEE%20transactions%20on%20electromagnetic%20compatibility&rft.au=Xu%20Gao&rft.date=2014-12-01&rft.volume=56&rft.issue=6&rft.spage=1335&rft.epage=1343&rft.pages=1335-1343&rft.issn=0018-9375&rft.eissn=1558-187X&rft.coden=IEMCAE&rft_id=info:doi/10.1109/TEMC.2014.2322081&rft_dat=%3Cproquest_RIE%3E1651396043%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1639269255&rft_id=info:pmid/&rft_ieee_id=6819460&rfr_iscdi=true |