Far-Field Prediction Using Only Magnetic Near-Field Scanning for EMI Test

Far-field prediction for electromagnetic interference (EMI) testing is achieved using only magnetic near-field on a Huygens's surface. The electrical field on the Huygens's surface is calculated from the magnetic near-field using the finite element method (FEM). Two examples are used to ve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electromagnetic compatibility 2014-12, Vol.56 (6), p.1335-1343
Hauptverfasser: Xu Gao, Jun Fan, Yaojiang Zhang, Kajbaf, Hamed, Pommerenke, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1343
container_issue 6
container_start_page 1335
container_title IEEE transactions on electromagnetic compatibility
container_volume 56
creator Xu Gao
Jun Fan
Yaojiang Zhang
Kajbaf, Hamed
Pommerenke, David
description Far-field prediction for electromagnetic interference (EMI) testing is achieved using only magnetic near-field on a Huygens's surface. The electrical field on the Huygens's surface is calculated from the magnetic near-field using the finite element method (FEM). Two examples are used to verify the proposed method. The first example uses the field radiated by an infinitesimal electric dipole. The calculated results are compared with the analytical solution. In the second example, the calculated results are compared with full-wave simulation results for the radiation of a print circuit board (PCB). The validity of this method when the near-field is high-impedance field is verified as well. Sensitivity of the far field to noise in both magnitude and phase in the near-field data is also investigated. The results indicate that the proposed method is very robust to the random variation of both. The effect of using only four sides of the Huygens's box is investigated as well, revealing that, in some instances, the incomplete Huygens's box can be used to predict the far field well. The proposed method is validated using near-field measurement data taken from a sleeve dipole antenna. The error for the maximum far-field value is in only 1.3 dB.
doi_str_mv 10.1109/TEMC.2014.2322081
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEMC_2014_2322081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6819460</ieee_id><sourcerecordid>1651396043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-e53a78f51d5f03693ac542ca376618b64328b8c6469c1933514fea4a8f8bde8c3</originalsourceid><addsrcrecordid>eNpd0MtqAjEUBuBQWqi1fYDSzUA33YzNyc1kWURbQWuhCt2FmMlIZMzYZFz49p1BcdHV4cB3LvwIPQIeAGD1uhzPRwOCgQ0IJQRLuEI94FzmIIc_16iHMchc0SG_RXcpbduWcUJ7aDoxMZ94VxXZV3SFt42vQ7ZKPmyyRaiO2dxsgmu8zT7dRX5bE0Inyjpm4_k0W7rU3KOb0lTJPZxrH60m4-XoI58t3qejt1lumSBN7jg1Q1lyKHiJqVDUWM6INXQoBMi1YJTItbSCCWVBUcqBlc4wI0u5Lpy0tI9eTnv3sf49tIf1zifrqsoEVx-SBsGBKoEZbenzP7qtDzG037WKKiIU4bxVcFI21ilFV-p99DsTjxqw7sLVXbi6C1efw21nnk4z3jl38UKCYgLTP56kcq4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1639269255</pqid></control><display><type>article</type><title>Far-Field Prediction Using Only Magnetic Near-Field Scanning for EMI Test</title><source>IEEE Electronic Library (IEL)</source><creator>Xu Gao ; Jun Fan ; Yaojiang Zhang ; Kajbaf, Hamed ; Pommerenke, David</creator><creatorcontrib>Xu Gao ; Jun Fan ; Yaojiang Zhang ; Kajbaf, Hamed ; Pommerenke, David</creatorcontrib><description>Far-field prediction for electromagnetic interference (EMI) testing is achieved using only magnetic near-field on a Huygens's surface. The electrical field on the Huygens's surface is calculated from the magnetic near-field using the finite element method (FEM). Two examples are used to verify the proposed method. The first example uses the field radiated by an infinitesimal electric dipole. The calculated results are compared with the analytical solution. In the second example, the calculated results are compared with full-wave simulation results for the radiation of a print circuit board (PCB). The validity of this method when the near-field is high-impedance field is verified as well. Sensitivity of the far field to noise in both magnitude and phase in the near-field data is also investigated. The results indicate that the proposed method is very robust to the random variation of both. The effect of using only four sides of the Huygens's box is investigated as well, revealing that, in some instances, the incomplete Huygens's box can be used to predict the far field well. The proposed method is validated using near-field measurement data taken from a sleeve dipole antenna. The error for the maximum far-field value is in only 1.3 dB.</description><identifier>ISSN: 0018-9375</identifier><identifier>EISSN: 1558-187X</identifier><identifier>DOI: 10.1109/TEMC.2014.2322081</identifier><identifier>CODEN: IEMCAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuit boards ; Computer simulation ; Electric dipoles ; Electromagnetic compatibility ; Electromagnetic interference ; Electromagnetic interference (EMI) ; equivalence theorem ; Far fields ; Finite element analysis ; Finite element method ; finite element methods (FEMs) ; magnetic fields ; Magnetic resonance imaging ; Mathematical analysis ; near-field-far-field transformation ; Noise measurement ; Surface impedance</subject><ispartof>IEEE transactions on electromagnetic compatibility, 2014-12, Vol.56 (6), p.1335-1343</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-e53a78f51d5f03693ac542ca376618b64328b8c6469c1933514fea4a8f8bde8c3</citedby><cites>FETCH-LOGICAL-c462t-e53a78f51d5f03693ac542ca376618b64328b8c6469c1933514fea4a8f8bde8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6819460$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6819460$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu Gao</creatorcontrib><creatorcontrib>Jun Fan</creatorcontrib><creatorcontrib>Yaojiang Zhang</creatorcontrib><creatorcontrib>Kajbaf, Hamed</creatorcontrib><creatorcontrib>Pommerenke, David</creatorcontrib><title>Far-Field Prediction Using Only Magnetic Near-Field Scanning for EMI Test</title><title>IEEE transactions on electromagnetic compatibility</title><addtitle>TEMC</addtitle><description>Far-field prediction for electromagnetic interference (EMI) testing is achieved using only magnetic near-field on a Huygens's surface. The electrical field on the Huygens's surface is calculated from the magnetic near-field using the finite element method (FEM). Two examples are used to verify the proposed method. The first example uses the field radiated by an infinitesimal electric dipole. The calculated results are compared with the analytical solution. In the second example, the calculated results are compared with full-wave simulation results for the radiation of a print circuit board (PCB). The validity of this method when the near-field is high-impedance field is verified as well. Sensitivity of the far field to noise in both magnitude and phase in the near-field data is also investigated. The results indicate that the proposed method is very robust to the random variation of both. The effect of using only four sides of the Huygens's box is investigated as well, revealing that, in some instances, the incomplete Huygens's box can be used to predict the far field well. The proposed method is validated using near-field measurement data taken from a sleeve dipole antenna. The error for the maximum far-field value is in only 1.3 dB.</description><subject>Circuit boards</subject><subject>Computer simulation</subject><subject>Electric dipoles</subject><subject>Electromagnetic compatibility</subject><subject>Electromagnetic interference</subject><subject>Electromagnetic interference (EMI)</subject><subject>equivalence theorem</subject><subject>Far fields</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>finite element methods (FEMs)</subject><subject>magnetic fields</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical analysis</subject><subject>near-field-far-field transformation</subject><subject>Noise measurement</subject><subject>Surface impedance</subject><issn>0018-9375</issn><issn>1558-187X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0MtqAjEUBuBQWqi1fYDSzUA33YzNyc1kWURbQWuhCt2FmMlIZMzYZFz49p1BcdHV4cB3LvwIPQIeAGD1uhzPRwOCgQ0IJQRLuEI94FzmIIc_16iHMchc0SG_RXcpbduWcUJ7aDoxMZ94VxXZV3SFt42vQ7ZKPmyyRaiO2dxsgmu8zT7dRX5bE0Inyjpm4_k0W7rU3KOb0lTJPZxrH60m4-XoI58t3qejt1lumSBN7jg1Q1lyKHiJqVDUWM6INXQoBMi1YJTItbSCCWVBUcqBlc4wI0u5Lpy0tI9eTnv3sf49tIf1zifrqsoEVx-SBsGBKoEZbenzP7qtDzG037WKKiIU4bxVcFI21ilFV-p99DsTjxqw7sLVXbi6C1efw21nnk4z3jl38UKCYgLTP56kcq4</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Xu Gao</creator><creator>Jun Fan</creator><creator>Yaojiang Zhang</creator><creator>Kajbaf, Hamed</creator><creator>Pommerenke, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20141201</creationdate><title>Far-Field Prediction Using Only Magnetic Near-Field Scanning for EMI Test</title><author>Xu Gao ; Jun Fan ; Yaojiang Zhang ; Kajbaf, Hamed ; Pommerenke, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-e53a78f51d5f03693ac542ca376618b64328b8c6469c1933514fea4a8f8bde8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Circuit boards</topic><topic>Computer simulation</topic><topic>Electric dipoles</topic><topic>Electromagnetic compatibility</topic><topic>Electromagnetic interference</topic><topic>Electromagnetic interference (EMI)</topic><topic>equivalence theorem</topic><topic>Far fields</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>finite element methods (FEMs)</topic><topic>magnetic fields</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical analysis</topic><topic>near-field-far-field transformation</topic><topic>Noise measurement</topic><topic>Surface impedance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu Gao</creatorcontrib><creatorcontrib>Jun Fan</creatorcontrib><creatorcontrib>Yaojiang Zhang</creatorcontrib><creatorcontrib>Kajbaf, Hamed</creatorcontrib><creatorcontrib>Pommerenke, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electromagnetic compatibility</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu Gao</au><au>Jun Fan</au><au>Yaojiang Zhang</au><au>Kajbaf, Hamed</au><au>Pommerenke, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Far-Field Prediction Using Only Magnetic Near-Field Scanning for EMI Test</atitle><jtitle>IEEE transactions on electromagnetic compatibility</jtitle><stitle>TEMC</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>56</volume><issue>6</issue><spage>1335</spage><epage>1343</epage><pages>1335-1343</pages><issn>0018-9375</issn><eissn>1558-187X</eissn><coden>IEMCAE</coden><abstract>Far-field prediction for electromagnetic interference (EMI) testing is achieved using only magnetic near-field on a Huygens's surface. The electrical field on the Huygens's surface is calculated from the magnetic near-field using the finite element method (FEM). Two examples are used to verify the proposed method. The first example uses the field radiated by an infinitesimal electric dipole. The calculated results are compared with the analytical solution. In the second example, the calculated results are compared with full-wave simulation results for the radiation of a print circuit board (PCB). The validity of this method when the near-field is high-impedance field is verified as well. Sensitivity of the far field to noise in both magnitude and phase in the near-field data is also investigated. The results indicate that the proposed method is very robust to the random variation of both. The effect of using only four sides of the Huygens's box is investigated as well, revealing that, in some instances, the incomplete Huygens's box can be used to predict the far field well. The proposed method is validated using near-field measurement data taken from a sleeve dipole antenna. The error for the maximum far-field value is in only 1.3 dB.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEMC.2014.2322081</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9375
ispartof IEEE transactions on electromagnetic compatibility, 2014-12, Vol.56 (6), p.1335-1343
issn 0018-9375
1558-187X
language eng
recordid cdi_crossref_primary_10_1109_TEMC_2014_2322081
source IEEE Electronic Library (IEL)
subjects Circuit boards
Computer simulation
Electric dipoles
Electromagnetic compatibility
Electromagnetic interference
Electromagnetic interference (EMI)
equivalence theorem
Far fields
Finite element analysis
Finite element method
finite element methods (FEMs)
magnetic fields
Magnetic resonance imaging
Mathematical analysis
near-field-far-field transformation
Noise measurement
Surface impedance
title Far-Field Prediction Using Only Magnetic Near-Field Scanning for EMI Test
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A02%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Far-Field%20Prediction%20Using%20Only%20Magnetic%20Near-Field%20Scanning%20for%20EMI%20Test&rft.jtitle=IEEE%20transactions%20on%20electromagnetic%20compatibility&rft.au=Xu%20Gao&rft.date=2014-12-01&rft.volume=56&rft.issue=6&rft.spage=1335&rft.epage=1343&rft.pages=1335-1343&rft.issn=0018-9375&rft.eissn=1558-187X&rft.coden=IEMCAE&rft_id=info:doi/10.1109/TEMC.2014.2322081&rft_dat=%3Cproquest_RIE%3E1651396043%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1639269255&rft_id=info:pmid/&rft_ieee_id=6819460&rfr_iscdi=true