Heat-Sink Modeling and Design With Dipole Moments Representing IC Excitation
Electromagnetic field coupling and radiation from a heat sink is a challenging issue in the electromagnetic compatibility design of high-speed circuits. In order to accurately predict the fields excited by a heat sink, an approach is proposed in this paper to include the equivalent excitation of the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electromagnetic compatibility 2013-02, Vol.55 (1), p.168-174 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electromagnetic field coupling and radiation from a heat sink is a challenging issue in the electromagnetic compatibility design of high-speed circuits. In order to accurately predict the fields excited by a heat sink, an approach is proposed in this paper to include the equivalent excitation of the heat sink, which is described by some dipole moments constructed from the near-field scanning of the integrated circuit beneath the heat sink. With both the dipole moments and the passive heat-sink structure incorporated in a full-wave model, near-field coupling and far-field radiation can be estimated, and the heat-sink structure can be optimized for mitigating unintentional interferences. Two examples are used to validate and demonstrate the proposed approach. |
---|---|
ISSN: | 0018-9375 1558-187X |
DOI: | 10.1109/TEMC.2012.2210720 |