Passive LiNbO₃ Memristor With Multilevel States for Neuromorphic Computing

The implementation of multilevel conductance states is still difficult for passive memristors used in neuromorphic computing. Here, a passive single-crystalline LiNbO 3 (LN) memristor with multilevel states was proposed, which can be precisely programmed into multilevel target states (with a standar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2024-10, Vol.71 (10), p.6049-6054
Hauptverfasser: Xie, Qin, Pan, Xinqiang, Wang, Yi, Luo, Wenbo, Zhao, Zebin, Tong, Junde, Yang, Xudong, Shuai, Yao, Wu, Chuangui, Zhang, Wanli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The implementation of multilevel conductance states is still difficult for passive memristors used in neuromorphic computing. Here, a passive single-crystalline LiNbO 3 (LN) memristor with multilevel states was proposed, which can be precisely programmed into multilevel target states (with a standard deviation below 0.008~\mu s). Moreover, 32 separated and reliable conductance states can be achieved. The pattern recognition simulation for different numbers of conductance states ( {N}_{\textrm {G}} ) is performed. As {N}_{\textrm {G}} increases, the inference accuracy rises and reaches 98.01% when {N}_{\textrm {G}} is 32. Even taking into account the conductance programming and drift error of the memristors, the accuracy can still reach 90.37%. The results validate the application potential of this passive memristor with 32 conductance states in neuromorphic computing.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2024.3450437