Effect of Yttrium Treatment on Germanium-Oxide-Based Interfacial Layer of Ge P-Channel Metal-Oxide-Semiconductor Field-Effect Transistor Fabricated Through in Situ Plasma-Enhanced Atomic Layer Deposition

This study investigated the effect of yttrium (Y) treatment on a germanium (Ge)-oxide-based interfacial layer (IL) through in situ plasma-enhanced atomic layer deposition (PEALD). Time-of-flight secondary-ion mass spectrometry revealed that the surface reaction and deposition could be successfully p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2024-03, Vol.71 (3), p.2030-2035
Hauptverfasser: Li, Hui-Hsuan, Lin, Kuan-Yu, Tsai, Yi-He, Lin, Yu-Hsien, Chien, Chao-Hsin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigated the effect of yttrium (Y) treatment on a germanium (Ge)-oxide-based interfacial layer (IL) through in situ plasma-enhanced atomic layer deposition (PEALD). Time-of-flight secondary-ion mass spectrometry revealed that the surface reaction and deposition could be successfully performed with a Y precursor, and X-ray photoelectron spectroscopy (XPS) revealed that Y treatment on an IL can suppress GeOx volatilization. A metal-oxide-semiconductor capacitor gate-stack with a Y-GeOx IL has a low leakage current density ( 2.1\times 10^{-{5}} A/cm2) and a low interface trap density (approximately 5.5\times 10^{{11}} eV−1 cm−2) under optimized temperatures. Moreover, the Ge P-channel metal-oxide-semiconductor field-effect transistor (P-MOSFET) containing a gate-stack with a Y-treated Ge-oxide-based IL exhibited a high {I} _{ \mathrm{\scriptscriptstyle ON}}/{I} _{ \mathrm{\scriptscriptstyle OFF}} ratio and low OFF-state current. Therefore, applying the proposed Y treatment on the IL of a Ge P-MOSFET can help achieve a subnanometer equivalent oxide thickness (EOT) and an extremely low gate leakage current.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2024.3349998