Heterogeneous 3-D Sequential CFETs With Ge (110) Nanosheet p-FETs on Si (100) Bulk n-FETs

In this study, we report on the fabrication and characterization of 3-D sequential complementary field-effect-transistors (CFETs) using the direct wafer bonding (DWB) technology and a low-temperature process for monolithic 3-D (M3D) integration. The device features a high-performance top Ge (110)/ \...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2024-01, Vol.71 (1), p.393-399
Hauptverfasser: Kim, Seong Kwang, Lim, Hyeong-Rak, Jeong, Jaejoong, Lee, Seung Woo, Jeong, Ho Jin, Park, Juhyuk, Kim, Joon Pyo, Jeong, Jaeyong, Kim, Bong Ho, Ahn, Seung-Yeop, Park, Youngkeun, Geum, Dae-Myoung, Kim, Younghyun, Baek, Yongku, Cho, Byung Jin, Kim, Sanghyeon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we report on the fabrication and characterization of 3-D sequential complementary field-effect-transistors (CFETs) using the direct wafer bonding (DWB) technology and a low-temperature process for monolithic 3-D (M3D) integration. The device features a high-performance top Ge (110)/ \langle 110\rangle channel on a bottom Si CMOS. To ensure high performance without causing damage to the bottom Si n-FETs, the maximum thermal budget during the fabrication of the top Ge p-FETs was limited to 400 °C. We systematically investigated the mobility enhancement of the thin Ge (110) nanosheet (NS) channel p-FETs as a function of channel orientation. Our results demonstrate that the low effective hole mass along the \langle 110\rangle direction on Ge (110) wafer provides record-high mobility of 400 cm2/ \text{V}\cdot \text{s} (corresponding to 760 cm2/ \text{V}\cdot \text{s} when normalized by footprint) at room temperature, which is the highest reported among the Ge p-FETs with similar channel thicknesses.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2023.3331669