Simulation Study on a Planar Quasi-Optical Waveguide Circuit for a W-Band Gyro-TWT With Stability Improvement

In this article, a planar quasi-optical waveguide (PQOW) circuit is proposed for vacuum electron devices (VEDs) for the first time. The circuit is made of a series of metamaterial pillars attached to a pair of parallel plates for phase compensation. It can propagate quasi-optical modes as a pair of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2023-06, Vol.70 (6), p.1-7
Hauptverfasser: Yao, Yelei, Sun, Yibin, Dai, Xinge, Liu, Guo, Wang, Jianxun, Cao, Yingjian, Jiang, Wei, Luo, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, a planar quasi-optical waveguide (PQOW) circuit is proposed for vacuum electron devices (VEDs) for the first time. The circuit is made of a series of metamaterial pillars attached to a pair of parallel plates for phase compensation. It can propagate quasi-optical modes as a pair of concave mirrors does, while the lower order HE _{\text{0}\textit{n}} modes experience much heavier circuit loss compared to that of convention confocal waveguide circuits, which can improve the backward oscillation (BWO) stability of gyro-amplifiers. As an example, a W-band gyro-amplifier with PQOW circuits to replace conventional confocal circuits is designed. The 3-D particle-in-cell simulation demonstrated that the circuit is capable of producing stable high-power radiation within 96-108 GHz, with an electron efficiency of about 15% over the entire bandwidth.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2023.3263823