Doping Profile Engineered Triple Heterojunction TFETs With 12-nm Body Thickness

Triple heterojunction (THJ) tunneling field-effect transistors (TFETs) have been proposed to resolve the low ON-current challenge of TFETs. However, the design space for THJ-TFETs is limited by fabrication challenges with respect to device dimensions and material interfaces. This work shows that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2021-06, Vol.68 (6), p.3104-3111
Hauptverfasser: Chen, Chin-Yi, Tseng, Hsin-Ying, Ilatikhameneh, Hesameddin, Ameen, Tarek A., Klimeck, Gerhard, Rodwell, Mark J., Povolotskyi, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3111
container_issue 6
container_start_page 3104
container_title IEEE transactions on electron devices
container_volume 68
creator Chen, Chin-Yi
Tseng, Hsin-Ying
Ilatikhameneh, Hesameddin
Ameen, Tarek A.
Klimeck, Gerhard
Rodwell, Mark J.
Povolotskyi, Michael
description Triple heterojunction (THJ) tunneling field-effect transistors (TFETs) have been proposed to resolve the low ON-current challenge of TFETs. However, the design space for THJ-TFETs is limited by fabrication challenges with respect to device dimensions and material interfaces. This work shows that the original THJ-TFET design with 12-nm body thickness has poor performance because its subthreshold swing (SS) is 50 mV/decade and the ON-current is only 6~\mu A/\mu m . To improve the performance, the doping profile of THJ-TFET is engineered to boost the resonant tunneling efficiency. The proposed THJ-TFET design shows an SS of 40 mV/decade over four orders of drain current and an ON-current of 325~\mu A/\mu m with {V}_{\textit {GS}} =0.3 V. Since THJ-TFETs have multiple quantum wells and material interfaces in the tunneling junction, quantum transport simulations in such devices are complicated. State-of-the-art mode-space quantum transport simulation, including the effect of thermalization and scattering, is employed in this work to optimize THJ-TFET design.
doi_str_mv 10.1109/TED.2021.3075190
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2021_3075190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9424717</ieee_id><sourcerecordid>2530112606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-63141d6e611e973ecc6d73cadad4423f62f1675424589358d3852b14c334043d3</originalsourceid><addsrcrecordid>eNo9kEFPAjEQRhujiYjeTbw08bzYabvd3aMCigkJHtZ4bNbtLBShxXY58O8tgXiazOR7M5NHyD2wEQCrnurpZMQZh5FgRQ4VuyADyPMiq5RUl2TAGJRZJUpxTW5iXKdWSckHZDHxO-uW9CP4zm6QTt3SOsSAhtbB7tJkhj0Gv967trfe0fp1Wkf6ZfsVBZ65LX3x5kDrlW1_HMZ4S666ZhPx7lyH5DMB41k2X7y9j5_nWSuE6DMlQIJRqACwKgS2rTKFaBvTmPSW6BTvQBW55DIvK5GXRpQ5_waZaMmkMGJIHk97d8H_7jH2eu33waWTmueCAXDFVEqxU6oNPsaAnd4Fu23CQQPTR206adNHbfqsLSEPJ8Qi4n-8Sp8UUIg_FGpmGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530112606</pqid></control><display><type>article</type><title>Doping Profile Engineered Triple Heterojunction TFETs With 12-nm Body Thickness</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Chin-Yi ; Tseng, Hsin-Ying ; Ilatikhameneh, Hesameddin ; Ameen, Tarek A. ; Klimeck, Gerhard ; Rodwell, Mark J. ; Povolotskyi, Michael</creator><creatorcontrib>Chen, Chin-Yi ; Tseng, Hsin-Ying ; Ilatikhameneh, Hesameddin ; Ameen, Tarek A. ; Klimeck, Gerhard ; Rodwell, Mark J. ; Povolotskyi, Michael</creatorcontrib><description><![CDATA[Triple heterojunction (THJ) tunneling field-effect transistors (TFETs) have been proposed to resolve the low ON-current challenge of TFETs. However, the design space for THJ-TFETs is limited by fabrication challenges with respect to device dimensions and material interfaces. This work shows that the original THJ-TFET design with 12-nm body thickness has poor performance because its subthreshold swing (SS) is 50 mV/decade and the ON-current is only <inline-formula> <tex-math notation="LaTeX">6~\mu A/\mu m </tex-math></inline-formula>. To improve the performance, the doping profile of THJ-TFET is engineered to boost the resonant tunneling efficiency. The proposed THJ-TFET design shows an SS of 40 mV/decade over four orders of drain current and an ON-current of <inline-formula> <tex-math notation="LaTeX">325~\mu A/\mu m </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">{V}_{\textit {GS}} =0.3 </tex-math></inline-formula> V. Since THJ-TFETs have multiple quantum wells and material interfaces in the tunneling junction, quantum transport simulations in such devices are complicated. State-of-the-art mode-space quantum transport simulation, including the effect of thermalization and scattering, is employed in this work to optimize THJ-TFET design.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2021.3075190</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atomistic mode-space quantum transport ; channel thickness ; Design optimization ; Doping ; Field effect transistors ; Heterojunctions ; Logic gates ; Performance enhancement ; Performance evaluation ; PIN photodiodes ; Quantum transport ; Quantum wells ; Resonant tunneling ; scattering ; Semiconductor devices ; TFETs ; Thermalization (energy absorption) ; Thickness ; triple heterojunction (THJ) tunneling field-effect transistors (TFETs) ; Tunneling</subject><ispartof>IEEE transactions on electron devices, 2021-06, Vol.68 (6), p.3104-3111</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-63141d6e611e973ecc6d73cadad4423f62f1675424589358d3852b14c334043d3</citedby><cites>FETCH-LOGICAL-c333t-63141d6e611e973ecc6d73cadad4423f62f1675424589358d3852b14c334043d3</cites><orcidid>0000-0003-1455-5579 ; 0000-0002-5989-1616 ; 0000-0001-8561-2134 ; 0000-0002-5358-7576 ; 0000-0001-7128-773X ; 0000-0002-1868-9534 ; 0000-0002-0257-9760</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9424717$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9424717$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Chin-Yi</creatorcontrib><creatorcontrib>Tseng, Hsin-Ying</creatorcontrib><creatorcontrib>Ilatikhameneh, Hesameddin</creatorcontrib><creatorcontrib>Ameen, Tarek A.</creatorcontrib><creatorcontrib>Klimeck, Gerhard</creatorcontrib><creatorcontrib>Rodwell, Mark J.</creatorcontrib><creatorcontrib>Povolotskyi, Michael</creatorcontrib><title>Doping Profile Engineered Triple Heterojunction TFETs With 12-nm Body Thickness</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[Triple heterojunction (THJ) tunneling field-effect transistors (TFETs) have been proposed to resolve the low ON-current challenge of TFETs. However, the design space for THJ-TFETs is limited by fabrication challenges with respect to device dimensions and material interfaces. This work shows that the original THJ-TFET design with 12-nm body thickness has poor performance because its subthreshold swing (SS) is 50 mV/decade and the ON-current is only <inline-formula> <tex-math notation="LaTeX">6~\mu A/\mu m </tex-math></inline-formula>. To improve the performance, the doping profile of THJ-TFET is engineered to boost the resonant tunneling efficiency. The proposed THJ-TFET design shows an SS of 40 mV/decade over four orders of drain current and an ON-current of <inline-formula> <tex-math notation="LaTeX">325~\mu A/\mu m </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">{V}_{\textit {GS}} =0.3 </tex-math></inline-formula> V. Since THJ-TFETs have multiple quantum wells and material interfaces in the tunneling junction, quantum transport simulations in such devices are complicated. State-of-the-art mode-space quantum transport simulation, including the effect of thermalization and scattering, is employed in this work to optimize THJ-TFET design.]]></description><subject>Atomistic mode-space quantum transport</subject><subject>channel thickness</subject><subject>Design optimization</subject><subject>Doping</subject><subject>Field effect transistors</subject><subject>Heterojunctions</subject><subject>Logic gates</subject><subject>Performance enhancement</subject><subject>Performance evaluation</subject><subject>PIN photodiodes</subject><subject>Quantum transport</subject><subject>Quantum wells</subject><subject>Resonant tunneling</subject><subject>scattering</subject><subject>Semiconductor devices</subject><subject>TFETs</subject><subject>Thermalization (energy absorption)</subject><subject>Thickness</subject><subject>triple heterojunction (THJ) tunneling field-effect transistors (TFETs)</subject><subject>Tunneling</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPAjEQRhujiYjeTbw08bzYabvd3aMCigkJHtZ4bNbtLBShxXY58O8tgXiazOR7M5NHyD2wEQCrnurpZMQZh5FgRQ4VuyADyPMiq5RUl2TAGJRZJUpxTW5iXKdWSckHZDHxO-uW9CP4zm6QTt3SOsSAhtbB7tJkhj0Gv967trfe0fp1Wkf6ZfsVBZ65LX3x5kDrlW1_HMZ4S666ZhPx7lyH5DMB41k2X7y9j5_nWSuE6DMlQIJRqACwKgS2rTKFaBvTmPSW6BTvQBW55DIvK5GXRpQ5_waZaMmkMGJIHk97d8H_7jH2eu33waWTmueCAXDFVEqxU6oNPsaAnd4Fu23CQQPTR206adNHbfqsLSEPJ8Qi4n-8Sp8UUIg_FGpmGg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Chen, Chin-Yi</creator><creator>Tseng, Hsin-Ying</creator><creator>Ilatikhameneh, Hesameddin</creator><creator>Ameen, Tarek A.</creator><creator>Klimeck, Gerhard</creator><creator>Rodwell, Mark J.</creator><creator>Povolotskyi, Michael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1455-5579</orcidid><orcidid>https://orcid.org/0000-0002-5989-1616</orcidid><orcidid>https://orcid.org/0000-0001-8561-2134</orcidid><orcidid>https://orcid.org/0000-0002-5358-7576</orcidid><orcidid>https://orcid.org/0000-0001-7128-773X</orcidid><orcidid>https://orcid.org/0000-0002-1868-9534</orcidid><orcidid>https://orcid.org/0000-0002-0257-9760</orcidid></search><sort><creationdate>20210601</creationdate><title>Doping Profile Engineered Triple Heterojunction TFETs With 12-nm Body Thickness</title><author>Chen, Chin-Yi ; Tseng, Hsin-Ying ; Ilatikhameneh, Hesameddin ; Ameen, Tarek A. ; Klimeck, Gerhard ; Rodwell, Mark J. ; Povolotskyi, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-63141d6e611e973ecc6d73cadad4423f62f1675424589358d3852b14c334043d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomistic mode-space quantum transport</topic><topic>channel thickness</topic><topic>Design optimization</topic><topic>Doping</topic><topic>Field effect transistors</topic><topic>Heterojunctions</topic><topic>Logic gates</topic><topic>Performance enhancement</topic><topic>Performance evaluation</topic><topic>PIN photodiodes</topic><topic>Quantum transport</topic><topic>Quantum wells</topic><topic>Resonant tunneling</topic><topic>scattering</topic><topic>Semiconductor devices</topic><topic>TFETs</topic><topic>Thermalization (energy absorption)</topic><topic>Thickness</topic><topic>triple heterojunction (THJ) tunneling field-effect transistors (TFETs)</topic><topic>Tunneling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chin-Yi</creatorcontrib><creatorcontrib>Tseng, Hsin-Ying</creatorcontrib><creatorcontrib>Ilatikhameneh, Hesameddin</creatorcontrib><creatorcontrib>Ameen, Tarek A.</creatorcontrib><creatorcontrib>Klimeck, Gerhard</creatorcontrib><creatorcontrib>Rodwell, Mark J.</creatorcontrib><creatorcontrib>Povolotskyi, Michael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Chin-Yi</au><au>Tseng, Hsin-Ying</au><au>Ilatikhameneh, Hesameddin</au><au>Ameen, Tarek A.</au><au>Klimeck, Gerhard</au><au>Rodwell, Mark J.</au><au>Povolotskyi, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Doping Profile Engineered Triple Heterojunction TFETs With 12-nm Body Thickness</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>68</volume><issue>6</issue><spage>3104</spage><epage>3111</epage><pages>3104-3111</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[Triple heterojunction (THJ) tunneling field-effect transistors (TFETs) have been proposed to resolve the low ON-current challenge of TFETs. However, the design space for THJ-TFETs is limited by fabrication challenges with respect to device dimensions and material interfaces. This work shows that the original THJ-TFET design with 12-nm body thickness has poor performance because its subthreshold swing (SS) is 50 mV/decade and the ON-current is only <inline-formula> <tex-math notation="LaTeX">6~\mu A/\mu m </tex-math></inline-formula>. To improve the performance, the doping profile of THJ-TFET is engineered to boost the resonant tunneling efficiency. The proposed THJ-TFET design shows an SS of 40 mV/decade over four orders of drain current and an ON-current of <inline-formula> <tex-math notation="LaTeX">325~\mu A/\mu m </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">{V}_{\textit {GS}} =0.3 </tex-math></inline-formula> V. Since THJ-TFETs have multiple quantum wells and material interfaces in the tunneling junction, quantum transport simulations in such devices are complicated. State-of-the-art mode-space quantum transport simulation, including the effect of thermalization and scattering, is employed in this work to optimize THJ-TFET design.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2021.3075190</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1455-5579</orcidid><orcidid>https://orcid.org/0000-0002-5989-1616</orcidid><orcidid>https://orcid.org/0000-0001-8561-2134</orcidid><orcidid>https://orcid.org/0000-0002-5358-7576</orcidid><orcidid>https://orcid.org/0000-0001-7128-773X</orcidid><orcidid>https://orcid.org/0000-0002-1868-9534</orcidid><orcidid>https://orcid.org/0000-0002-0257-9760</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2021-06, Vol.68 (6), p.3104-3111
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2021_3075190
source IEEE Electronic Library (IEL)
subjects Atomistic mode-space quantum transport
channel thickness
Design optimization
Doping
Field effect transistors
Heterojunctions
Logic gates
Performance enhancement
Performance evaluation
PIN photodiodes
Quantum transport
Quantum wells
Resonant tunneling
scattering
Semiconductor devices
TFETs
Thermalization (energy absorption)
Thickness
triple heterojunction (THJ) tunneling field-effect transistors (TFETs)
Tunneling
title Doping Profile Engineered Triple Heterojunction TFETs With 12-nm Body Thickness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T00%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Doping%20Profile%20Engineered%20Triple%20Heterojunction%20TFETs%20With%2012-nm%20Body%20Thickness&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Chen,%20Chin-Yi&rft.date=2021-06-01&rft.volume=68&rft.issue=6&rft.spage=3104&rft.epage=3111&rft.pages=3104-3111&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2021.3075190&rft_dat=%3Cproquest_RIE%3E2530112606%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530112606&rft_id=info:pmid/&rft_ieee_id=9424717&rfr_iscdi=true