Doping Profile Engineered Triple Heterojunction TFETs With 12-nm Body Thickness
Triple heterojunction (THJ) tunneling field-effect transistors (TFETs) have been proposed to resolve the low ON-current challenge of TFETs. However, the design space for THJ-TFETs is limited by fabrication challenges with respect to device dimensions and material interfaces. This work shows that the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2021-06, Vol.68 (6), p.3104-3111 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3111 |
---|---|
container_issue | 6 |
container_start_page | 3104 |
container_title | IEEE transactions on electron devices |
container_volume | 68 |
creator | Chen, Chin-Yi Tseng, Hsin-Ying Ilatikhameneh, Hesameddin Ameen, Tarek A. Klimeck, Gerhard Rodwell, Mark J. Povolotskyi, Michael |
description | Triple heterojunction (THJ) tunneling field-effect transistors (TFETs) have been proposed to resolve the low ON-current challenge of TFETs. However, the design space for THJ-TFETs is limited by fabrication challenges with respect to device dimensions and material interfaces. This work shows that the original THJ-TFET design with 12-nm body thickness has poor performance because its subthreshold swing (SS) is 50 mV/decade and the ON-current is only 6~\mu A/\mu m . To improve the performance, the doping profile of THJ-TFET is engineered to boost the resonant tunneling efficiency. The proposed THJ-TFET design shows an SS of 40 mV/decade over four orders of drain current and an ON-current of 325~\mu A/\mu m with {V}_{\textit {GS}} =0.3 V. Since THJ-TFETs have multiple quantum wells and material interfaces in the tunneling junction, quantum transport simulations in such devices are complicated. State-of-the-art mode-space quantum transport simulation, including the effect of thermalization and scattering, is employed in this work to optimize THJ-TFET design. |
doi_str_mv | 10.1109/TED.2021.3075190 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2021_3075190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9424717</ieee_id><sourcerecordid>2530112606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-63141d6e611e973ecc6d73cadad4423f62f1675424589358d3852b14c334043d3</originalsourceid><addsrcrecordid>eNo9kEFPAjEQRhujiYjeTbw08bzYabvd3aMCigkJHtZ4bNbtLBShxXY58O8tgXiazOR7M5NHyD2wEQCrnurpZMQZh5FgRQ4VuyADyPMiq5RUl2TAGJRZJUpxTW5iXKdWSckHZDHxO-uW9CP4zm6QTt3SOsSAhtbB7tJkhj0Gv967trfe0fp1Wkf6ZfsVBZ65LX3x5kDrlW1_HMZ4S666ZhPx7lyH5DMB41k2X7y9j5_nWSuE6DMlQIJRqACwKgS2rTKFaBvTmPSW6BTvQBW55DIvK5GXRpQ5_waZaMmkMGJIHk97d8H_7jH2eu33waWTmueCAXDFVEqxU6oNPsaAnd4Fu23CQQPTR206adNHbfqsLSEPJ8Qi4n-8Sp8UUIg_FGpmGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530112606</pqid></control><display><type>article</type><title>Doping Profile Engineered Triple Heterojunction TFETs With 12-nm Body Thickness</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Chin-Yi ; Tseng, Hsin-Ying ; Ilatikhameneh, Hesameddin ; Ameen, Tarek A. ; Klimeck, Gerhard ; Rodwell, Mark J. ; Povolotskyi, Michael</creator><creatorcontrib>Chen, Chin-Yi ; Tseng, Hsin-Ying ; Ilatikhameneh, Hesameddin ; Ameen, Tarek A. ; Klimeck, Gerhard ; Rodwell, Mark J. ; Povolotskyi, Michael</creatorcontrib><description><![CDATA[Triple heterojunction (THJ) tunneling field-effect transistors (TFETs) have been proposed to resolve the low ON-current challenge of TFETs. However, the design space for THJ-TFETs is limited by fabrication challenges with respect to device dimensions and material interfaces. This work shows that the original THJ-TFET design with 12-nm body thickness has poor performance because its subthreshold swing (SS) is 50 mV/decade and the ON-current is only <inline-formula> <tex-math notation="LaTeX">6~\mu A/\mu m </tex-math></inline-formula>. To improve the performance, the doping profile of THJ-TFET is engineered to boost the resonant tunneling efficiency. The proposed THJ-TFET design shows an SS of 40 mV/decade over four orders of drain current and an ON-current of <inline-formula> <tex-math notation="LaTeX">325~\mu A/\mu m </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">{V}_{\textit {GS}} =0.3 </tex-math></inline-formula> V. Since THJ-TFETs have multiple quantum wells and material interfaces in the tunneling junction, quantum transport simulations in such devices are complicated. State-of-the-art mode-space quantum transport simulation, including the effect of thermalization and scattering, is employed in this work to optimize THJ-TFET design.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2021.3075190</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atomistic mode-space quantum transport ; channel thickness ; Design optimization ; Doping ; Field effect transistors ; Heterojunctions ; Logic gates ; Performance enhancement ; Performance evaluation ; PIN photodiodes ; Quantum transport ; Quantum wells ; Resonant tunneling ; scattering ; Semiconductor devices ; TFETs ; Thermalization (energy absorption) ; Thickness ; triple heterojunction (THJ) tunneling field-effect transistors (TFETs) ; Tunneling</subject><ispartof>IEEE transactions on electron devices, 2021-06, Vol.68 (6), p.3104-3111</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-63141d6e611e973ecc6d73cadad4423f62f1675424589358d3852b14c334043d3</citedby><cites>FETCH-LOGICAL-c333t-63141d6e611e973ecc6d73cadad4423f62f1675424589358d3852b14c334043d3</cites><orcidid>0000-0003-1455-5579 ; 0000-0002-5989-1616 ; 0000-0001-8561-2134 ; 0000-0002-5358-7576 ; 0000-0001-7128-773X ; 0000-0002-1868-9534 ; 0000-0002-0257-9760</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9424717$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9424717$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Chin-Yi</creatorcontrib><creatorcontrib>Tseng, Hsin-Ying</creatorcontrib><creatorcontrib>Ilatikhameneh, Hesameddin</creatorcontrib><creatorcontrib>Ameen, Tarek A.</creatorcontrib><creatorcontrib>Klimeck, Gerhard</creatorcontrib><creatorcontrib>Rodwell, Mark J.</creatorcontrib><creatorcontrib>Povolotskyi, Michael</creatorcontrib><title>Doping Profile Engineered Triple Heterojunction TFETs With 12-nm Body Thickness</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[Triple heterojunction (THJ) tunneling field-effect transistors (TFETs) have been proposed to resolve the low ON-current challenge of TFETs. However, the design space for THJ-TFETs is limited by fabrication challenges with respect to device dimensions and material interfaces. This work shows that the original THJ-TFET design with 12-nm body thickness has poor performance because its subthreshold swing (SS) is 50 mV/decade and the ON-current is only <inline-formula> <tex-math notation="LaTeX">6~\mu A/\mu m </tex-math></inline-formula>. To improve the performance, the doping profile of THJ-TFET is engineered to boost the resonant tunneling efficiency. The proposed THJ-TFET design shows an SS of 40 mV/decade over four orders of drain current and an ON-current of <inline-formula> <tex-math notation="LaTeX">325~\mu A/\mu m </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">{V}_{\textit {GS}} =0.3 </tex-math></inline-formula> V. Since THJ-TFETs have multiple quantum wells and material interfaces in the tunneling junction, quantum transport simulations in such devices are complicated. State-of-the-art mode-space quantum transport simulation, including the effect of thermalization and scattering, is employed in this work to optimize THJ-TFET design.]]></description><subject>Atomistic mode-space quantum transport</subject><subject>channel thickness</subject><subject>Design optimization</subject><subject>Doping</subject><subject>Field effect transistors</subject><subject>Heterojunctions</subject><subject>Logic gates</subject><subject>Performance enhancement</subject><subject>Performance evaluation</subject><subject>PIN photodiodes</subject><subject>Quantum transport</subject><subject>Quantum wells</subject><subject>Resonant tunneling</subject><subject>scattering</subject><subject>Semiconductor devices</subject><subject>TFETs</subject><subject>Thermalization (energy absorption)</subject><subject>Thickness</subject><subject>triple heterojunction (THJ) tunneling field-effect transistors (TFETs)</subject><subject>Tunneling</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPAjEQRhujiYjeTbw08bzYabvd3aMCigkJHtZ4bNbtLBShxXY58O8tgXiazOR7M5NHyD2wEQCrnurpZMQZh5FgRQ4VuyADyPMiq5RUl2TAGJRZJUpxTW5iXKdWSckHZDHxO-uW9CP4zm6QTt3SOsSAhtbB7tJkhj0Gv967trfe0fp1Wkf6ZfsVBZ65LX3x5kDrlW1_HMZ4S666ZhPx7lyH5DMB41k2X7y9j5_nWSuE6DMlQIJRqACwKgS2rTKFaBvTmPSW6BTvQBW55DIvK5GXRpQ5_waZaMmkMGJIHk97d8H_7jH2eu33waWTmueCAXDFVEqxU6oNPsaAnd4Fu23CQQPTR206adNHbfqsLSEPJ8Qi4n-8Sp8UUIg_FGpmGg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Chen, Chin-Yi</creator><creator>Tseng, Hsin-Ying</creator><creator>Ilatikhameneh, Hesameddin</creator><creator>Ameen, Tarek A.</creator><creator>Klimeck, Gerhard</creator><creator>Rodwell, Mark J.</creator><creator>Povolotskyi, Michael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1455-5579</orcidid><orcidid>https://orcid.org/0000-0002-5989-1616</orcidid><orcidid>https://orcid.org/0000-0001-8561-2134</orcidid><orcidid>https://orcid.org/0000-0002-5358-7576</orcidid><orcidid>https://orcid.org/0000-0001-7128-773X</orcidid><orcidid>https://orcid.org/0000-0002-1868-9534</orcidid><orcidid>https://orcid.org/0000-0002-0257-9760</orcidid></search><sort><creationdate>20210601</creationdate><title>Doping Profile Engineered Triple Heterojunction TFETs With 12-nm Body Thickness</title><author>Chen, Chin-Yi ; Tseng, Hsin-Ying ; Ilatikhameneh, Hesameddin ; Ameen, Tarek A. ; Klimeck, Gerhard ; Rodwell, Mark J. ; Povolotskyi, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-63141d6e611e973ecc6d73cadad4423f62f1675424589358d3852b14c334043d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomistic mode-space quantum transport</topic><topic>channel thickness</topic><topic>Design optimization</topic><topic>Doping</topic><topic>Field effect transistors</topic><topic>Heterojunctions</topic><topic>Logic gates</topic><topic>Performance enhancement</topic><topic>Performance evaluation</topic><topic>PIN photodiodes</topic><topic>Quantum transport</topic><topic>Quantum wells</topic><topic>Resonant tunneling</topic><topic>scattering</topic><topic>Semiconductor devices</topic><topic>TFETs</topic><topic>Thermalization (energy absorption)</topic><topic>Thickness</topic><topic>triple heterojunction (THJ) tunneling field-effect transistors (TFETs)</topic><topic>Tunneling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chin-Yi</creatorcontrib><creatorcontrib>Tseng, Hsin-Ying</creatorcontrib><creatorcontrib>Ilatikhameneh, Hesameddin</creatorcontrib><creatorcontrib>Ameen, Tarek A.</creatorcontrib><creatorcontrib>Klimeck, Gerhard</creatorcontrib><creatorcontrib>Rodwell, Mark J.</creatorcontrib><creatorcontrib>Povolotskyi, Michael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Chin-Yi</au><au>Tseng, Hsin-Ying</au><au>Ilatikhameneh, Hesameddin</au><au>Ameen, Tarek A.</au><au>Klimeck, Gerhard</au><au>Rodwell, Mark J.</au><au>Povolotskyi, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Doping Profile Engineered Triple Heterojunction TFETs With 12-nm Body Thickness</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>68</volume><issue>6</issue><spage>3104</spage><epage>3111</epage><pages>3104-3111</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[Triple heterojunction (THJ) tunneling field-effect transistors (TFETs) have been proposed to resolve the low ON-current challenge of TFETs. However, the design space for THJ-TFETs is limited by fabrication challenges with respect to device dimensions and material interfaces. This work shows that the original THJ-TFET design with 12-nm body thickness has poor performance because its subthreshold swing (SS) is 50 mV/decade and the ON-current is only <inline-formula> <tex-math notation="LaTeX">6~\mu A/\mu m </tex-math></inline-formula>. To improve the performance, the doping profile of THJ-TFET is engineered to boost the resonant tunneling efficiency. The proposed THJ-TFET design shows an SS of 40 mV/decade over four orders of drain current and an ON-current of <inline-formula> <tex-math notation="LaTeX">325~\mu A/\mu m </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">{V}_{\textit {GS}} =0.3 </tex-math></inline-formula> V. Since THJ-TFETs have multiple quantum wells and material interfaces in the tunneling junction, quantum transport simulations in such devices are complicated. State-of-the-art mode-space quantum transport simulation, including the effect of thermalization and scattering, is employed in this work to optimize THJ-TFET design.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2021.3075190</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1455-5579</orcidid><orcidid>https://orcid.org/0000-0002-5989-1616</orcidid><orcidid>https://orcid.org/0000-0001-8561-2134</orcidid><orcidid>https://orcid.org/0000-0002-5358-7576</orcidid><orcidid>https://orcid.org/0000-0001-7128-773X</orcidid><orcidid>https://orcid.org/0000-0002-1868-9534</orcidid><orcidid>https://orcid.org/0000-0002-0257-9760</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2021-06, Vol.68 (6), p.3104-3111 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TED_2021_3075190 |
source | IEEE Electronic Library (IEL) |
subjects | Atomistic mode-space quantum transport channel thickness Design optimization Doping Field effect transistors Heterojunctions Logic gates Performance enhancement Performance evaluation PIN photodiodes Quantum transport Quantum wells Resonant tunneling scattering Semiconductor devices TFETs Thermalization (energy absorption) Thickness triple heterojunction (THJ) tunneling field-effect transistors (TFETs) Tunneling |
title | Doping Profile Engineered Triple Heterojunction TFETs With 12-nm Body Thickness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T00%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Doping%20Profile%20Engineered%20Triple%20Heterojunction%20TFETs%20With%2012-nm%20Body%20Thickness&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Chen,%20Chin-Yi&rft.date=2021-06-01&rft.volume=68&rft.issue=6&rft.spage=3104&rft.epage=3111&rft.pages=3104-3111&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2021.3075190&rft_dat=%3Cproquest_RIE%3E2530112606%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530112606&rft_id=info:pmid/&rft_ieee_id=9424717&rfr_iscdi=true |