Doping Profile Engineered Triple Heterojunction TFETs With 12-nm Body Thickness

Triple heterojunction (THJ) tunneling field-effect transistors (TFETs) have been proposed to resolve the low ON-current challenge of TFETs. However, the design space for THJ-TFETs is limited by fabrication challenges with respect to device dimensions and material interfaces. This work shows that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2021-06, Vol.68 (6), p.3104-3111
Hauptverfasser: Chen, Chin-Yi, Tseng, Hsin-Ying, Ilatikhameneh, Hesameddin, Ameen, Tarek A., Klimeck, Gerhard, Rodwell, Mark J., Povolotskyi, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Triple heterojunction (THJ) tunneling field-effect transistors (TFETs) have been proposed to resolve the low ON-current challenge of TFETs. However, the design space for THJ-TFETs is limited by fabrication challenges with respect to device dimensions and material interfaces. This work shows that the original THJ-TFET design with 12-nm body thickness has poor performance because its subthreshold swing (SS) is 50 mV/decade and the ON-current is only 6~\mu A/\mu m . To improve the performance, the doping profile of THJ-TFET is engineered to boost the resonant tunneling efficiency. The proposed THJ-TFET design shows an SS of 40 mV/decade over four orders of drain current and an ON-current of 325~\mu A/\mu m with {V}_{\textit {GS}} =0.3 V. Since THJ-TFETs have multiple quantum wells and material interfaces in the tunneling junction, quantum transport simulations in such devices are complicated. State-of-the-art mode-space quantum transport simulation, including the effect of thermalization and scattering, is employed in this work to optimize THJ-TFET design.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2021.3075190