Universal Metal-Interlayer-Semiconductor Contact Modeling Considering Interface-State Effect on Contact Resistivity Degradation

We present a universal metal-interlayer-semiconductor (MIS) contact model to demonstrate the effect of Fermi-level unpinning, considering both the extrinsic interface-state density ( {D} _{\textsf {it}} ) and the density of metal-induced gap states ( {D} _{\textsf {MIGS}} ) at the semiconductor surf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2018-11, Vol.65 (11), p.4982-4987
Hauptverfasser: Kim, Jeong-Kyu, Kim, Seung-Hwan, Kim, Taikyu, Yu, Hyun-Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a universal metal-interlayer-semiconductor (MIS) contact model to demonstrate the effect of Fermi-level unpinning, considering both the extrinsic interface-state density ( {D} _{\textsf {it}} ) and the density of metal-induced gap states ( {D} _{\textsf {MIGS}} ) at the semiconductor surface. Previous studies on MIS contact modeling have quantified only the impact of {D} _{\textsf {MIGS}} on Fermi-level pinning. However, the extrinsic interface states such as interface traps and local vacancies significantly affect the contact resistivity degradation in MIS contacts. Moreover, field emission (FE) and thermionic FE (TFE) current density models in MIS contact are described in detail, for the extraction of the specific contact resistivity ( \rho _{c} ). The physical validity of the proposed model is demonstrated by comparing its calculated \rho _{c} with those obtained in prior experimental studies employing a GaAs substrate (Ti/ZnO/n-GaAs and Ti/TiO 2 /n-GaAs). The \rho _{c} values for the MIS contacts are also evaluated with various {D} _{\textsf {it}} levels and the interlayers. This model is promising for the development of a comprehensive next-generation MIS contact for the sub-10-nm complementary metal-oxide-semiconductor technology.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2018.2868833