Kinetic Velocity Model to Account for Ballistic Effects in the Drift-Diffusion Transport Approach
This paper proposes a novel kinetic velocity model (KVM) for the drift-diffusion (DD) transport approach to describe ballistic effects. It also presents a simulation study of the ballistic effect in short-channel InGaAs and silicon FETs. Monte Carlo and subband Boltzmann transport equation results a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2017-11, Vol.64 (11), p.4599-4606 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4606 |
---|---|
container_issue | 11 |
container_start_page | 4599 |
container_title | IEEE transactions on electron devices |
container_volume | 64 |
creator | Penzin, Oleg Smith, Lee Erlebach, Axel Munkang Choi Ko-Hsin Lee |
description | This paper proposes a novel kinetic velocity model (KVM) for the drift-diffusion (DD) transport approach to describe ballistic effects. It also presents a simulation study of the ballistic effect in short-channel InGaAs and silicon FETs. Monte Carlo and subband Boltzmann transport equation results as well as DD simulations using the simple gate length-dependent ballistic mobility proposed in the literature and the KVM model are compared and discussed. Basic concepts, such as the Matthiessen rule and Fermi-Dirac statistics, are analyzed with a view on ballistic transport in devices in the linear and saturation regimes. |
doi_str_mv | 10.1109/TED.2017.2751968 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2017_2751968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8051117</ieee_id><sourcerecordid>10_1109_TED_2017_2751968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-bb7fd1f5f023484a530f75694a6fc71eb7c37e6a827cf9e2e61b8686f47b5dbd3</originalsourceid><addsrcrecordid>eNo9kEtLAzEYRYMoWKt7wU3-wNS8k1nWtj6w4qa6HTKZfDQyToYkXfTf29Li6nLhnrs4CN1TMqOU1I-b1XLGCNUzpiWtlblAEyqlrmol1CWaEEJNVXPDr9FNzj-HqoRgE2Tfw-BLcPjb99GFsscfsfM9LhHPnYu7oWCICT_Zvg_5uFsBeFcyDgMuW4-XKUCplgFgl0Mc8CbZIY8xFTwfxxSt296iK7B99nfnnKKv59Vm8VqtP1_eFvN15ZjipWpbDR0FCYRxYYSVnICWqhZWgdPUt9px7ZU1TDuoPfOKtkYZBUK3sms7PkXk9OtSzDl5aMYUfm3aN5Q0R0XNQVFzVNScFR2QhxMSvPf_c0MkpVTzP8EIY4c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kinetic Velocity Model to Account for Ballistic Effects in the Drift-Diffusion Transport Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Penzin, Oleg ; Smith, Lee ; Erlebach, Axel ; Munkang Choi ; Ko-Hsin Lee</creator><creatorcontrib>Penzin, Oleg ; Smith, Lee ; Erlebach, Axel ; Munkang Choi ; Ko-Hsin Lee</creatorcontrib><description>This paper proposes a novel kinetic velocity model (KVM) for the drift-diffusion (DD) transport approach to describe ballistic effects. It also presents a simulation study of the ballistic effect in short-channel InGaAs and silicon FETs. Monte Carlo and subband Boltzmann transport equation results as well as DD simulations using the simple gate length-dependent ballistic mobility proposed in the literature and the KVM model are compared and discussed. Basic concepts, such as the Matthiessen rule and Fermi-Dirac statistics, are analyzed with a view on ballistic transport in devices in the linear and saturation regimes.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2017.2751968</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Ballistic mobility ; Ballistic transport ; drift diffusion (DD) ; Fermi–Dirac statistics ; Indium gallium arsenide ; InGaAs ; Kinetic theory ; kinetic velocity ; Mathematical model ; MOSFET ; Semiconductor device modeling ; silicon ; technology computer-aided design (TCAD) ; thermal velocity</subject><ispartof>IEEE transactions on electron devices, 2017-11, Vol.64 (11), p.4599-4606</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-bb7fd1f5f023484a530f75694a6fc71eb7c37e6a827cf9e2e61b8686f47b5dbd3</citedby><cites>FETCH-LOGICAL-c263t-bb7fd1f5f023484a530f75694a6fc71eb7c37e6a827cf9e2e61b8686f47b5dbd3</cites><orcidid>0000-0003-0543-4679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8051117$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8051117$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Penzin, Oleg</creatorcontrib><creatorcontrib>Smith, Lee</creatorcontrib><creatorcontrib>Erlebach, Axel</creatorcontrib><creatorcontrib>Munkang Choi</creatorcontrib><creatorcontrib>Ko-Hsin Lee</creatorcontrib><title>Kinetic Velocity Model to Account for Ballistic Effects in the Drift-Diffusion Transport Approach</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>This paper proposes a novel kinetic velocity model (KVM) for the drift-diffusion (DD) transport approach to describe ballistic effects. It also presents a simulation study of the ballistic effect in short-channel InGaAs and silicon FETs. Monte Carlo and subband Boltzmann transport equation results as well as DD simulations using the simple gate length-dependent ballistic mobility proposed in the literature and the KVM model are compared and discussed. Basic concepts, such as the Matthiessen rule and Fermi-Dirac statistics, are analyzed with a view on ballistic transport in devices in the linear and saturation regimes.</description><subject>Ballistic mobility</subject><subject>Ballistic transport</subject><subject>drift diffusion (DD)</subject><subject>Fermi–Dirac statistics</subject><subject>Indium gallium arsenide</subject><subject>InGaAs</subject><subject>Kinetic theory</subject><subject>kinetic velocity</subject><subject>Mathematical model</subject><subject>MOSFET</subject><subject>Semiconductor device modeling</subject><subject>silicon</subject><subject>technology computer-aided design (TCAD)</subject><subject>thermal velocity</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEYRYMoWKt7wU3-wNS8k1nWtj6w4qa6HTKZfDQyToYkXfTf29Li6nLhnrs4CN1TMqOU1I-b1XLGCNUzpiWtlblAEyqlrmol1CWaEEJNVXPDr9FNzj-HqoRgE2Tfw-BLcPjb99GFsscfsfM9LhHPnYu7oWCICT_Zvg_5uFsBeFcyDgMuW4-XKUCplgFgl0Mc8CbZIY8xFTwfxxSt296iK7B99nfnnKKv59Vm8VqtP1_eFvN15ZjipWpbDR0FCYRxYYSVnICWqhZWgdPUt9px7ZU1TDuoPfOKtkYZBUK3sms7PkXk9OtSzDl5aMYUfm3aN5Q0R0XNQVFzVNScFR2QhxMSvPf_c0MkpVTzP8EIY4c</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Penzin, Oleg</creator><creator>Smith, Lee</creator><creator>Erlebach, Axel</creator><creator>Munkang Choi</creator><creator>Ko-Hsin Lee</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0543-4679</orcidid></search><sort><creationdate>201711</creationdate><title>Kinetic Velocity Model to Account for Ballistic Effects in the Drift-Diffusion Transport Approach</title><author>Penzin, Oleg ; Smith, Lee ; Erlebach, Axel ; Munkang Choi ; Ko-Hsin Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-bb7fd1f5f023484a530f75694a6fc71eb7c37e6a827cf9e2e61b8686f47b5dbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Ballistic mobility</topic><topic>Ballistic transport</topic><topic>drift diffusion (DD)</topic><topic>Fermi–Dirac statistics</topic><topic>Indium gallium arsenide</topic><topic>InGaAs</topic><topic>Kinetic theory</topic><topic>kinetic velocity</topic><topic>Mathematical model</topic><topic>MOSFET</topic><topic>Semiconductor device modeling</topic><topic>silicon</topic><topic>technology computer-aided design (TCAD)</topic><topic>thermal velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Penzin, Oleg</creatorcontrib><creatorcontrib>Smith, Lee</creatorcontrib><creatorcontrib>Erlebach, Axel</creatorcontrib><creatorcontrib>Munkang Choi</creatorcontrib><creatorcontrib>Ko-Hsin Lee</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Penzin, Oleg</au><au>Smith, Lee</au><au>Erlebach, Axel</au><au>Munkang Choi</au><au>Ko-Hsin Lee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic Velocity Model to Account for Ballistic Effects in the Drift-Diffusion Transport Approach</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2017-11</date><risdate>2017</risdate><volume>64</volume><issue>11</issue><spage>4599</spage><epage>4606</epage><pages>4599-4606</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>This paper proposes a novel kinetic velocity model (KVM) for the drift-diffusion (DD) transport approach to describe ballistic effects. It also presents a simulation study of the ballistic effect in short-channel InGaAs and silicon FETs. Monte Carlo and subband Boltzmann transport equation results as well as DD simulations using the simple gate length-dependent ballistic mobility proposed in the literature and the KVM model are compared and discussed. Basic concepts, such as the Matthiessen rule and Fermi-Dirac statistics, are analyzed with a view on ballistic transport in devices in the linear and saturation regimes.</abstract><pub>IEEE</pub><doi>10.1109/TED.2017.2751968</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0543-4679</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2017-11, Vol.64 (11), p.4599-4606 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TED_2017_2751968 |
source | IEEE Electronic Library (IEL) |
subjects | Ballistic mobility Ballistic transport drift diffusion (DD) Fermi–Dirac statistics Indium gallium arsenide InGaAs Kinetic theory kinetic velocity Mathematical model MOSFET Semiconductor device modeling silicon technology computer-aided design (TCAD) thermal velocity |
title | Kinetic Velocity Model to Account for Ballistic Effects in the Drift-Diffusion Transport Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A52%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20Velocity%20Model%20to%20Account%20for%20Ballistic%20Effects%20in%20the%20Drift-Diffusion%20Transport%20Approach&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Penzin,%20Oleg&rft.date=2017-11&rft.volume=64&rft.issue=11&rft.spage=4599&rft.epage=4606&rft.pages=4599-4606&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2017.2751968&rft_dat=%3Ccrossref_RIE%3E10_1109_TED_2017_2751968%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8051117&rfr_iscdi=true |