Kinetic Velocity Model to Account for Ballistic Effects in the Drift-Diffusion Transport Approach

This paper proposes a novel kinetic velocity model (KVM) for the drift-diffusion (DD) transport approach to describe ballistic effects. It also presents a simulation study of the ballistic effect in short-channel InGaAs and silicon FETs. Monte Carlo and subband Boltzmann transport equation results a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2017-11, Vol.64 (11), p.4599-4606
Hauptverfasser: Penzin, Oleg, Smith, Lee, Erlebach, Axel, Munkang Choi, Ko-Hsin Lee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4606
container_issue 11
container_start_page 4599
container_title IEEE transactions on electron devices
container_volume 64
creator Penzin, Oleg
Smith, Lee
Erlebach, Axel
Munkang Choi
Ko-Hsin Lee
description This paper proposes a novel kinetic velocity model (KVM) for the drift-diffusion (DD) transport approach to describe ballistic effects. It also presents a simulation study of the ballistic effect in short-channel InGaAs and silicon FETs. Monte Carlo and subband Boltzmann transport equation results as well as DD simulations using the simple gate length-dependent ballistic mobility proposed in the literature and the KVM model are compared and discussed. Basic concepts, such as the Matthiessen rule and Fermi-Dirac statistics, are analyzed with a view on ballistic transport in devices in the linear and saturation regimes.
doi_str_mv 10.1109/TED.2017.2751968
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2017_2751968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8051117</ieee_id><sourcerecordid>10_1109_TED_2017_2751968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-bb7fd1f5f023484a530f75694a6fc71eb7c37e6a827cf9e2e61b8686f47b5dbd3</originalsourceid><addsrcrecordid>eNo9kEtLAzEYRYMoWKt7wU3-wNS8k1nWtj6w4qa6HTKZfDQyToYkXfTf29Li6nLhnrs4CN1TMqOU1I-b1XLGCNUzpiWtlblAEyqlrmol1CWaEEJNVXPDr9FNzj-HqoRgE2Tfw-BLcPjb99GFsscfsfM9LhHPnYu7oWCICT_Zvg_5uFsBeFcyDgMuW4-XKUCplgFgl0Mc8CbZIY8xFTwfxxSt296iK7B99nfnnKKv59Vm8VqtP1_eFvN15ZjipWpbDR0FCYRxYYSVnICWqhZWgdPUt9px7ZU1TDuoPfOKtkYZBUK3sms7PkXk9OtSzDl5aMYUfm3aN5Q0R0XNQVFzVNScFR2QhxMSvPf_c0MkpVTzP8EIY4c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kinetic Velocity Model to Account for Ballistic Effects in the Drift-Diffusion Transport Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Penzin, Oleg ; Smith, Lee ; Erlebach, Axel ; Munkang Choi ; Ko-Hsin Lee</creator><creatorcontrib>Penzin, Oleg ; Smith, Lee ; Erlebach, Axel ; Munkang Choi ; Ko-Hsin Lee</creatorcontrib><description>This paper proposes a novel kinetic velocity model (KVM) for the drift-diffusion (DD) transport approach to describe ballistic effects. It also presents a simulation study of the ballistic effect in short-channel InGaAs and silicon FETs. Monte Carlo and subband Boltzmann transport equation results as well as DD simulations using the simple gate length-dependent ballistic mobility proposed in the literature and the KVM model are compared and discussed. Basic concepts, such as the Matthiessen rule and Fermi-Dirac statistics, are analyzed with a view on ballistic transport in devices in the linear and saturation regimes.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2017.2751968</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Ballistic mobility ; Ballistic transport ; drift diffusion (DD) ; Fermi–Dirac statistics ; Indium gallium arsenide ; InGaAs ; Kinetic theory ; kinetic velocity ; Mathematical model ; MOSFET ; Semiconductor device modeling ; silicon ; technology computer-aided design (TCAD) ; thermal velocity</subject><ispartof>IEEE transactions on electron devices, 2017-11, Vol.64 (11), p.4599-4606</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-bb7fd1f5f023484a530f75694a6fc71eb7c37e6a827cf9e2e61b8686f47b5dbd3</citedby><cites>FETCH-LOGICAL-c263t-bb7fd1f5f023484a530f75694a6fc71eb7c37e6a827cf9e2e61b8686f47b5dbd3</cites><orcidid>0000-0003-0543-4679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8051117$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8051117$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Penzin, Oleg</creatorcontrib><creatorcontrib>Smith, Lee</creatorcontrib><creatorcontrib>Erlebach, Axel</creatorcontrib><creatorcontrib>Munkang Choi</creatorcontrib><creatorcontrib>Ko-Hsin Lee</creatorcontrib><title>Kinetic Velocity Model to Account for Ballistic Effects in the Drift-Diffusion Transport Approach</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>This paper proposes a novel kinetic velocity model (KVM) for the drift-diffusion (DD) transport approach to describe ballistic effects. It also presents a simulation study of the ballistic effect in short-channel InGaAs and silicon FETs. Monte Carlo and subband Boltzmann transport equation results as well as DD simulations using the simple gate length-dependent ballistic mobility proposed in the literature and the KVM model are compared and discussed. Basic concepts, such as the Matthiessen rule and Fermi-Dirac statistics, are analyzed with a view on ballistic transport in devices in the linear and saturation regimes.</description><subject>Ballistic mobility</subject><subject>Ballistic transport</subject><subject>drift diffusion (DD)</subject><subject>Fermi–Dirac statistics</subject><subject>Indium gallium arsenide</subject><subject>InGaAs</subject><subject>Kinetic theory</subject><subject>kinetic velocity</subject><subject>Mathematical model</subject><subject>MOSFET</subject><subject>Semiconductor device modeling</subject><subject>silicon</subject><subject>technology computer-aided design (TCAD)</subject><subject>thermal velocity</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEYRYMoWKt7wU3-wNS8k1nWtj6w4qa6HTKZfDQyToYkXfTf29Li6nLhnrs4CN1TMqOU1I-b1XLGCNUzpiWtlblAEyqlrmol1CWaEEJNVXPDr9FNzj-HqoRgE2Tfw-BLcPjb99GFsscfsfM9LhHPnYu7oWCICT_Zvg_5uFsBeFcyDgMuW4-XKUCplgFgl0Mc8CbZIY8xFTwfxxSt296iK7B99nfnnKKv59Vm8VqtP1_eFvN15ZjipWpbDR0FCYRxYYSVnICWqhZWgdPUt9px7ZU1TDuoPfOKtkYZBUK3sms7PkXk9OtSzDl5aMYUfm3aN5Q0R0XNQVFzVNScFR2QhxMSvPf_c0MkpVTzP8EIY4c</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Penzin, Oleg</creator><creator>Smith, Lee</creator><creator>Erlebach, Axel</creator><creator>Munkang Choi</creator><creator>Ko-Hsin Lee</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0543-4679</orcidid></search><sort><creationdate>201711</creationdate><title>Kinetic Velocity Model to Account for Ballistic Effects in the Drift-Diffusion Transport Approach</title><author>Penzin, Oleg ; Smith, Lee ; Erlebach, Axel ; Munkang Choi ; Ko-Hsin Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-bb7fd1f5f023484a530f75694a6fc71eb7c37e6a827cf9e2e61b8686f47b5dbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Ballistic mobility</topic><topic>Ballistic transport</topic><topic>drift diffusion (DD)</topic><topic>Fermi–Dirac statistics</topic><topic>Indium gallium arsenide</topic><topic>InGaAs</topic><topic>Kinetic theory</topic><topic>kinetic velocity</topic><topic>Mathematical model</topic><topic>MOSFET</topic><topic>Semiconductor device modeling</topic><topic>silicon</topic><topic>technology computer-aided design (TCAD)</topic><topic>thermal velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Penzin, Oleg</creatorcontrib><creatorcontrib>Smith, Lee</creatorcontrib><creatorcontrib>Erlebach, Axel</creatorcontrib><creatorcontrib>Munkang Choi</creatorcontrib><creatorcontrib>Ko-Hsin Lee</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Penzin, Oleg</au><au>Smith, Lee</au><au>Erlebach, Axel</au><au>Munkang Choi</au><au>Ko-Hsin Lee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic Velocity Model to Account for Ballistic Effects in the Drift-Diffusion Transport Approach</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2017-11</date><risdate>2017</risdate><volume>64</volume><issue>11</issue><spage>4599</spage><epage>4606</epage><pages>4599-4606</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>This paper proposes a novel kinetic velocity model (KVM) for the drift-diffusion (DD) transport approach to describe ballistic effects. It also presents a simulation study of the ballistic effect in short-channel InGaAs and silicon FETs. Monte Carlo and subband Boltzmann transport equation results as well as DD simulations using the simple gate length-dependent ballistic mobility proposed in the literature and the KVM model are compared and discussed. Basic concepts, such as the Matthiessen rule and Fermi-Dirac statistics, are analyzed with a view on ballistic transport in devices in the linear and saturation regimes.</abstract><pub>IEEE</pub><doi>10.1109/TED.2017.2751968</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0543-4679</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2017-11, Vol.64 (11), p.4599-4606
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2017_2751968
source IEEE Electronic Library (IEL)
subjects Ballistic mobility
Ballistic transport
drift diffusion (DD)
Fermi–Dirac statistics
Indium gallium arsenide
InGaAs
Kinetic theory
kinetic velocity
Mathematical model
MOSFET
Semiconductor device modeling
silicon
technology computer-aided design (TCAD)
thermal velocity
title Kinetic Velocity Model to Account for Ballistic Effects in the Drift-Diffusion Transport Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A52%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20Velocity%20Model%20to%20Account%20for%20Ballistic%20Effects%20in%20the%20Drift-Diffusion%20Transport%20Approach&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Penzin,%20Oleg&rft.date=2017-11&rft.volume=64&rft.issue=11&rft.spage=4599&rft.epage=4606&rft.pages=4599-4606&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2017.2751968&rft_dat=%3Ccrossref_RIE%3E10_1109_TED_2017_2751968%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8051117&rfr_iscdi=true