A Color-Tunable Polychromatic Organic-Light-Emitting-Diode Device With Low Resistive Intermediate Electrode for Roll-to-Roll Manufacturing

A flexible organic-light-emitting diode (OLED) with capability to show 16 million colors is fabricated on plastic barrier-film substrate, which can produce arbitrary shape with arbitrary colors, suitable for artistic expressions. Independently controlled red, green, and blue light-emitting layers ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2016-01, Vol.63 (1), p.402-407
Hauptverfasser: Tsujimura, Takatoshi, Hakii, Takeshi, Noda, Suguru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A flexible organic-light-emitting diode (OLED) with capability to show 16 million colors is fabricated on plastic barrier-film substrate, which can produce arbitrary shape with arbitrary colors, suitable for artistic expressions. Independently controlled red, green, and blue light-emitting layers are stacked vertically, so that no visible structure can be observed even with magnifiers from right-in-front measurement. In the past, large voltage drop of intermediate electrode was preventing this approach to be applied to actual electronic devices. However, according to the surface mobility control using Fick's law analysis, low sheet resistance 7.34 Ω/□ on plastic film is developed, so that 7.17-cm 2 area emission is successfully achieved. With optical length optimization for each color stack, more than 100% color reproduction in National Television Committee Standard is achieved by stack design. The device can be used for colored illumination, as well as for organic-light-emitting display pixels for three times emission than the conventional pixel design. The device is fabricated on plastic substrate, so that the polychromatic OLED device is manufacturable with roll-to-roll production line.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2015.2502257