Submicrometer Organic Thin-Film Transistors: Technology Assessment Through Noise Margin Analysis of Inverters

In this paper, we propose a methodology to evaluate the potential of submicrometer organic thin-film transistors (OTFTs) with nanoimprinted gate and self-aligned source and drain contacts. In the first step, the dedicated static model we previously reported is updated to account for the subthreshold...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2014-05, Vol.61 (5), p.1508-1514
Hauptverfasser: Zanella, Frederic, Marjanovic, Nenad, Ferrini, Rolando, Pengg, Franz Xaver, Enz, Christian C., Sallese, Jean-Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a methodology to evaluate the potential of submicrometer organic thin-film transistors (OTFTs) with nanoimprinted gate and self-aligned source and drain contacts. In the first step, the dedicated static model we previously reported is updated to account for the subthreshold regime and is used to simulate a zero-V GS inverter (one of the most basic unipolar logic gate). Based on the extracted noise margins, two methodologies were studied to assess the potential of this technology in terms of p-logic digital circuits. The first one is De Vusser's V T -based method that we adapted to our OTFT model. The second one relies on statistical modeling and takes into account the actual worst case scenario for an inverter in terms of noise margins. It better represents the experimental distribution because of specific corner models. The different analysis studied in this paper shows that these OTFTs, in the current state of the technology, are still not ready for complex digital circuits as the throughput is expected to be quite low. In addition, the proposed methodology and related interpretation are technology-independent therefore this analysis may serve as a basis to characterize unipolar-logic printed electronics and can be further extended to complementary-logic circuits.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2014.2304624