RF-Noise Modeling in Advanced CMOS Technologies
RF circuit design in deep-submicrometer CMOS technologies relies heavily on accurate modeling of thermal noise. Based on Nyquist's law, predictive modeling of thermal noise in MOSFETs was possible for a long time, provided that parasitic resistances and short-channel effects were properly accou...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2014-02, Vol.61 (2), p.245-254 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | RF circuit design in deep-submicrometer CMOS technologies relies heavily on accurate modeling of thermal noise. Based on Nyquist's law, predictive modeling of thermal noise in MOSFETs was possible for a long time, provided that parasitic resistances and short-channel effects were properly accounted for. In sub-100-nm technologies, however, microscopic excess noise starts to play a significant role and its incorporation in thermal noise models is unavoidable. Here, we will review several crucial ingredients for accurate RF noise modeling, with emphasis on sub-100-nm technologies. In particular, a detailed derivation and discussion are presented of our microscopic excess noise model. It is shown to qualitatively explain the observed noise (across bias and geometry) in a wide range of commercially available sub-100-nm foundry processes. Besides, the impact of excess noise on the minimum noise figure is discussed. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2013.2282960 |