Understanding and Optimization of Hot-Carrier Reliability in Germanium-on-Silicon pMOSFETs

In this paper, a comprehensive study of hot- carrier injection (HCI) has been performed on high-performance Si-passivated pMOSFETs with high-k metal gate fabricated on n-type germanium-on-silicon (Ge-on-Si) substrates. Negative bias temperature instability (NBTI) has also been explored on the same d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2009-05, Vol.56 (5), p.1063-1069
Hauptverfasser: Maji, D., Crupi, F., Amat, E., Simoen, E., De Jaeger, B., Brunco, D.P., Manoj, C.R., Rao, V.R., Magnone, P., Giusi, G., Pace, C., Pantisano, L., Mitard, J., Rodriguez, R., Nafria, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1069
container_issue 5
container_start_page 1063
container_title IEEE transactions on electron devices
container_volume 56
creator Maji, D.
Crupi, F.
Amat, E.
Simoen, E.
De Jaeger, B.
Brunco, D.P.
Manoj, C.R.
Rao, V.R.
Magnone, P.
Giusi, G.
Pace, C.
Pantisano, L.
Mitard, J.
Rodriguez, R.
Nafria, M.
description In this paper, a comprehensive study of hot- carrier injection (HCI) has been performed on high-performance Si-passivated pMOSFETs with high-k metal gate fabricated on n-type germanium-on-silicon (Ge-on-Si) substrates. Negative bias temperature instability (NBTI) has also been explored on the same devices. The following are found: (1) Impact ionization rate in Ge-on-Si MOSFETs is approximately two orders higher as compared to their Si counterpart; (2) NBTI degradation is a lesser concern than HCI for Ge-on-Si pMOSFETs; and (3) increasing the Si-passivation thickness from four to eight monolayers provides a remarkable lifetime improvement.
doi_str_mv 10.1109/TED.2009.2015854
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2009_2015854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4804776</ieee_id><sourcerecordid>2292066181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-897a2a83a9a540127c3c8bd03a185253fd3a1b4a1cee4d2ae4563a72726c9c333</originalsourceid><addsrcrecordid>eNp9kb1rHDEQxUVwIGc7fSDNYkhIs44-Rl9lODu2weEgtps0Yk6rDTK72rO0Vzh_fXTc4cKFm5nR6PeeEI-QT4yeM0bt9_vLi3NOqa2FSSPhHVkwKXVrFagjsqCUmdYKIz6Q41Ie61EB8AX585C6kMuMqYvpb1Nbs9rMcYz_cI5Taqa-uZ7mdok5x5Cb32GIuI5DnJ-bmJqrkEdMcTu2U2rv6tpXyebX6u7n5X05Je97HEr4eOgn5KGul9ft7erqZvnjtvXCwNwaq5GjEWhRAmVce-HNuqMCmZFcir6r0xqQ-RCg4xhAKoGaa6689UKIE_J177vJ09M2lNmNsfgwDJjCtC1OAFglKFTw25sgU5oJsJbRip69Qh-nbU71G85IZbkBLStE95DPUyk59G6T44j52THqdqG4GorbheIOoVTJl4MvFo9DnzH5WF50nGlgmu7e_7znYgjh5RoMBa2V-A9wrpN5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856928475</pqid></control><display><type>article</type><title>Understanding and Optimization of Hot-Carrier Reliability in Germanium-on-Silicon pMOSFETs</title><source>IEEE Electronic Library (IEL)</source><creator>Maji, D. ; Crupi, F. ; Amat, E. ; Simoen, E. ; De Jaeger, B. ; Brunco, D.P. ; Manoj, C.R. ; Rao, V.R. ; Magnone, P. ; Giusi, G. ; Pace, C. ; Pantisano, L. ; Mitard, J. ; Rodriguez, R. ; Nafria, M.</creator><creatorcontrib>Maji, D. ; Crupi, F. ; Amat, E. ; Simoen, E. ; De Jaeger, B. ; Brunco, D.P. ; Manoj, C.R. ; Rao, V.R. ; Magnone, P. ; Giusi, G. ; Pace, C. ; Pantisano, L. ; Mitard, J. ; Rodriguez, R. ; Nafria, M.</creatorcontrib><description>In this paper, a comprehensive study of hot- carrier injection (HCI) has been performed on high-performance Si-passivated pMOSFETs with high-k metal gate fabricated on n-type germanium-on-silicon (Ge-on-Si) substrates. Negative bias temperature instability (NBTI) has also been explored on the same devices. The following are found: (1) Impact ionization rate in Ge-on-Si MOSFETs is approximately two orders higher as compared to their Si counterpart; (2) NBTI degradation is a lesser concern than HCI for Ge-on-Si pMOSFETs; and (3) increasing the Si-passivation thickness from four to eight monolayers provides a remarkable lifetime improvement.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2009.2015854</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Carrier injection ; Degradation ; Devices ; Electronics ; Exact sciences and technology ; Germanium ; high- k ; hot carrier (HC) ; Human computer interaction ; impact ionization ; Instability ; Ionization ; Logic gates ; MOSFETs ; negative bias temperature instability (NBTI) ; Niobium base alloys ; Optimization ; pMOSFET ; Reliability ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon ; Stress ; Transistors</subject><ispartof>IEEE transactions on electron devices, 2009-05, Vol.56 (5), p.1063-1069</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-897a2a83a9a540127c3c8bd03a185253fd3a1b4a1cee4d2ae4563a72726c9c333</citedby><cites>FETCH-LOGICAL-c384t-897a2a83a9a540127c3c8bd03a185253fd3a1b4a1cee4d2ae4563a72726c9c333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4804776$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4804776$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21741700$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Maji, D.</creatorcontrib><creatorcontrib>Crupi, F.</creatorcontrib><creatorcontrib>Amat, E.</creatorcontrib><creatorcontrib>Simoen, E.</creatorcontrib><creatorcontrib>De Jaeger, B.</creatorcontrib><creatorcontrib>Brunco, D.P.</creatorcontrib><creatorcontrib>Manoj, C.R.</creatorcontrib><creatorcontrib>Rao, V.R.</creatorcontrib><creatorcontrib>Magnone, P.</creatorcontrib><creatorcontrib>Giusi, G.</creatorcontrib><creatorcontrib>Pace, C.</creatorcontrib><creatorcontrib>Pantisano, L.</creatorcontrib><creatorcontrib>Mitard, J.</creatorcontrib><creatorcontrib>Rodriguez, R.</creatorcontrib><creatorcontrib>Nafria, M.</creatorcontrib><title>Understanding and Optimization of Hot-Carrier Reliability in Germanium-on-Silicon pMOSFETs</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this paper, a comprehensive study of hot- carrier injection (HCI) has been performed on high-performance Si-passivated pMOSFETs with high-k metal gate fabricated on n-type germanium-on-silicon (Ge-on-Si) substrates. Negative bias temperature instability (NBTI) has also been explored on the same devices. The following are found: (1) Impact ionization rate in Ge-on-Si MOSFETs is approximately two orders higher as compared to their Si counterpart; (2) NBTI degradation is a lesser concern than HCI for Ge-on-Si pMOSFETs; and (3) increasing the Si-passivation thickness from four to eight monolayers provides a remarkable lifetime improvement.</description><subject>Applied sciences</subject><subject>Carrier injection</subject><subject>Degradation</subject><subject>Devices</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Germanium</subject><subject>high- k</subject><subject>hot carrier (HC)</subject><subject>Human computer interaction</subject><subject>impact ionization</subject><subject>Instability</subject><subject>Ionization</subject><subject>Logic gates</subject><subject>MOSFETs</subject><subject>negative bias temperature instability (NBTI)</subject><subject>Niobium base alloys</subject><subject>Optimization</subject><subject>pMOSFET</subject><subject>Reliability</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon</subject><subject>Stress</subject><subject>Transistors</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kb1rHDEQxUVwIGc7fSDNYkhIs44-Rl9lODu2weEgtps0Yk6rDTK72rO0Vzh_fXTc4cKFm5nR6PeeEI-QT4yeM0bt9_vLi3NOqa2FSSPhHVkwKXVrFagjsqCUmdYKIz6Q41Ie61EB8AX585C6kMuMqYvpb1Nbs9rMcYz_cI5Taqa-uZ7mdok5x5Cb32GIuI5DnJ-bmJqrkEdMcTu2U2rv6tpXyebX6u7n5X05Je97HEr4eOgn5KGul9ft7erqZvnjtvXCwNwaq5GjEWhRAmVce-HNuqMCmZFcir6r0xqQ-RCg4xhAKoGaa6689UKIE_J177vJ09M2lNmNsfgwDJjCtC1OAFglKFTw25sgU5oJsJbRip69Qh-nbU71G85IZbkBLStE95DPUyk59G6T44j52THqdqG4GorbheIOoVTJl4MvFo9DnzH5WF50nGlgmu7e_7znYgjh5RoMBa2V-A9wrpN5</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Maji, D.</creator><creator>Crupi, F.</creator><creator>Amat, E.</creator><creator>Simoen, E.</creator><creator>De Jaeger, B.</creator><creator>Brunco, D.P.</creator><creator>Manoj, C.R.</creator><creator>Rao, V.R.</creator><creator>Magnone, P.</creator><creator>Giusi, G.</creator><creator>Pace, C.</creator><creator>Pantisano, L.</creator><creator>Mitard, J.</creator><creator>Rodriguez, R.</creator><creator>Nafria, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090501</creationdate><title>Understanding and Optimization of Hot-Carrier Reliability in Germanium-on-Silicon pMOSFETs</title><author>Maji, D. ; Crupi, F. ; Amat, E. ; Simoen, E. ; De Jaeger, B. ; Brunco, D.P. ; Manoj, C.R. ; Rao, V.R. ; Magnone, P. ; Giusi, G. ; Pace, C. ; Pantisano, L. ; Mitard, J. ; Rodriguez, R. ; Nafria, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-897a2a83a9a540127c3c8bd03a185253fd3a1b4a1cee4d2ae4563a72726c9c333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Carrier injection</topic><topic>Degradation</topic><topic>Devices</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Germanium</topic><topic>high- k</topic><topic>hot carrier (HC)</topic><topic>Human computer interaction</topic><topic>impact ionization</topic><topic>Instability</topic><topic>Ionization</topic><topic>Logic gates</topic><topic>MOSFETs</topic><topic>negative bias temperature instability (NBTI)</topic><topic>Niobium base alloys</topic><topic>Optimization</topic><topic>pMOSFET</topic><topic>Reliability</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon</topic><topic>Stress</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maji, D.</creatorcontrib><creatorcontrib>Crupi, F.</creatorcontrib><creatorcontrib>Amat, E.</creatorcontrib><creatorcontrib>Simoen, E.</creatorcontrib><creatorcontrib>De Jaeger, B.</creatorcontrib><creatorcontrib>Brunco, D.P.</creatorcontrib><creatorcontrib>Manoj, C.R.</creatorcontrib><creatorcontrib>Rao, V.R.</creatorcontrib><creatorcontrib>Magnone, P.</creatorcontrib><creatorcontrib>Giusi, G.</creatorcontrib><creatorcontrib>Pace, C.</creatorcontrib><creatorcontrib>Pantisano, L.</creatorcontrib><creatorcontrib>Mitard, J.</creatorcontrib><creatorcontrib>Rodriguez, R.</creatorcontrib><creatorcontrib>Nafria, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maji, D.</au><au>Crupi, F.</au><au>Amat, E.</au><au>Simoen, E.</au><au>De Jaeger, B.</au><au>Brunco, D.P.</au><au>Manoj, C.R.</au><au>Rao, V.R.</au><au>Magnone, P.</au><au>Giusi, G.</au><au>Pace, C.</au><au>Pantisano, L.</au><au>Mitard, J.</au><au>Rodriguez, R.</au><au>Nafria, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding and Optimization of Hot-Carrier Reliability in Germanium-on-Silicon pMOSFETs</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2009-05-01</date><risdate>2009</risdate><volume>56</volume><issue>5</issue><spage>1063</spage><epage>1069</epage><pages>1063-1069</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this paper, a comprehensive study of hot- carrier injection (HCI) has been performed on high-performance Si-passivated pMOSFETs with high-k metal gate fabricated on n-type germanium-on-silicon (Ge-on-Si) substrates. Negative bias temperature instability (NBTI) has also been explored on the same devices. The following are found: (1) Impact ionization rate in Ge-on-Si MOSFETs is approximately two orders higher as compared to their Si counterpart; (2) NBTI degradation is a lesser concern than HCI for Ge-on-Si pMOSFETs; and (3) increasing the Si-passivation thickness from four to eight monolayers provides a remarkable lifetime improvement.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2009.2015854</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2009-05, Vol.56 (5), p.1063-1069
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2009_2015854
source IEEE Electronic Library (IEL)
subjects Applied sciences
Carrier injection
Degradation
Devices
Electronics
Exact sciences and technology
Germanium
high- k
hot carrier (HC)
Human computer interaction
impact ionization
Instability
Ionization
Logic gates
MOSFETs
negative bias temperature instability (NBTI)
Niobium base alloys
Optimization
pMOSFET
Reliability
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Silicon
Stress
Transistors
title Understanding and Optimization of Hot-Carrier Reliability in Germanium-on-Silicon pMOSFETs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20and%20Optimization%20of%20Hot-Carrier%20Reliability%20in%20Germanium-on-Silicon%20pMOSFETs&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Maji,%20D.&rft.date=2009-05-01&rft.volume=56&rft.issue=5&rft.spage=1063&rft.epage=1069&rft.pages=1063-1069&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2009.2015854&rft_dat=%3Cproquest_RIE%3E2292066181%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856928475&rft_id=info:pmid/&rft_ieee_id=4804776&rfr_iscdi=true