Understanding and Optimization of Hot-Carrier Reliability in Germanium-on-Silicon pMOSFETs
In this paper, a comprehensive study of hot- carrier injection (HCI) has been performed on high-performance Si-passivated pMOSFETs with high-k metal gate fabricated on n-type germanium-on-silicon (Ge-on-Si) substrates. Negative bias temperature instability (NBTI) has also been explored on the same d...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2009-05, Vol.56 (5), p.1063-1069 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a comprehensive study of hot- carrier injection (HCI) has been performed on high-performance Si-passivated pMOSFETs with high-k metal gate fabricated on n-type germanium-on-silicon (Ge-on-Si) substrates. Negative bias temperature instability (NBTI) has also been explored on the same devices. The following are found: (1) Impact ionization rate in Ge-on-Si MOSFETs is approximately two orders higher as compared to their Si counterpart; (2) NBTI degradation is a lesser concern than HCI for Ge-on-Si pMOSFETs; and (3) increasing the Si-passivation thickness from four to eight monolayers provides a remarkable lifetime improvement. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2009.2015854 |