Highly manufacturable advanced gate-stack technology for sub-45-nm self-aligned gate-first CMOSFETs

Issues surrounding the integration of Hf-based high-/spl kappa/ dielectrics with metal gates in a conventional CMOS flow are discussed. The careful choice of a gate-stack process as well as optimization of other CMOS process steps enable robust metal/high-/spl kappa/ CMOSFETs with wide process latit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2006-05, Vol.53 (5), p.979-989
Hauptverfasser: Seung-Chul Song, Zhibo Zhang, Huffman, C., Sim, J.H., Sang Ho Bae, Kirsch, P.D., Majhi, P., Rino Choi, Moumen, N., Byoung Hun Lee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Issues surrounding the integration of Hf-based high-/spl kappa/ dielectrics with metal gates in a conventional CMOS flow are discussed. The careful choice of a gate-stack process as well as optimization of other CMOS process steps enable robust metal/high-/spl kappa/ CMOSFETs with wide process latitude. HfO/sub 2/ of a 2-nm physical thickness shows a very minimal transient charge trapping resulting from kinetically suppressed crystallization. Thickness of metal electrode is also a critical factor to optimize physical-stress effects and minimize dopant diffusion. A high-temperature anneal after source/drain implantation in a conventional CMOSFET process is found to reduce the interface state density and improve the electron mobility. Even though MOSFET process using single midgap metal gate addresses fundamental issues related to implementing metal/high-/spl kappa/ stack, integrating two different metals on the same wafer (i.e., dual metal gate) poses several additional challenges, such as metal gate separation between n- and pMOS and gate-stack dry etch. We demonstrate that a dual metal gate CMOSFET yields high-performance devices even with a conventional gate-first approach if an appropriate metal separation between band-edge metal for nMOS and pMOS is incorporated. Optimization of dry-etch process enables gentle and complete removal of two different metal gate stacks on ultrathin high-/spl kappa/ layer.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2006.872700