ANFIS-based diagnosis and location of stator interturn faults in PM brushless DC motors
An automatic scheme for fault diagnosis and location of stator-winding interturns in permanent-magnet brushless dc motors is presented. System performances under healthy and faulty operation are obtained via a discrete-time model. Waveform of the electromagnetic torque is monitored and processed usi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on energy conversion 2004-12, Vol.19 (4), p.795-796 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An automatic scheme for fault diagnosis and location of stator-winding interturns in permanent-magnet brushless dc motors is presented. System performances under healthy and faulty operation are obtained via a discrete-time model. Waveform of the electromagnetic torque is monitored and processed using discrete Fourier transform and short-time Fourier transform to derive proper diagnostic indices. Two adaptive neuro-fuzzy inference systems (ANFIS) are developed to automate the fault diagnosis process. Test results show an acceptable performance for ANFIS in detecting the fault. |
---|---|
ISSN: | 0885-8969 1558-0059 |
DOI: | 10.1109/TEC.2004.837273 |