DIA: A Complexity-Effective Decoding Architecture

Fast instruction decoding is a true challenge for the design of CISC microprocessors implementing variable-length instructions. A well-known solution to overcome this problem is caching decoded instructions in a hardware buffer. Fetching already decoded instructions avoids the need for decoding them...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers 2009-04, Vol.58 (4), p.448-462
Hauptverfasser: Santana, O.J., Falcon, A., Ramirez, A., Valero, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fast instruction decoding is a true challenge for the design of CISC microprocessors implementing variable-length instructions. A well-known solution to overcome this problem is caching decoded instructions in a hardware buffer. Fetching already decoded instructions avoids the need for decoding them again, improving processor performance. However, introducing such special--purpose storage in the processor design involves an important increase in the fetch architecture complexity. In this paper, we propose a novel decoding architecture that reduces the fetch engine implementation cost. Instead of using a special-purpose hardware buffer, our proposal stores frequently decoded instructions in the memory hierarchy. The address where the decoded instructions are stored is kept in the branch prediction mechanism, enabling it to guide our decoding architecture. This makes it possible for the processor front end to fetch already decoded instructions from the memory instead of the original nondecoded instructions. Our results show that using our decoding architecture, a state-of-the-art superscalar processor achieves competitive performance improvements, while requiring less chip area and energy consumption in the fetch architecture than a hardware code caching mechanism.
ISSN:0018-9340
1557-9956
DOI:10.1109/TC.2008.170