Fatigue Detection of Pilots' Brain Through Brains Cognitive Map and Multilayer Latent Incremental Learning Model

This work proposes a nonparametric prior induced deep sum-logarithmic-multinomial mixture (DSLMM) model to detect pilots' cognitive states through the developed brain power map. DSLMM uses multinormal distribution to infer the latent variable of each neuron in the first layer of the network. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2022-11, Vol.52 (11), p.12302-12314
Hauptverfasser: Wu, Edmond Q., Lin, Chin-Teng, Zhu, Li-Min, Tang, Z. R., Jie, Yu-Wen, Zhou, Gui-Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work proposes a nonparametric prior induced deep sum-logarithmic-multinomial mixture (DSLMM) model to detect pilots' cognitive states through the developed brain power map. DSLMM uses multinormal distribution to infer the latent variable of each neuron in the first layer of the network. These latent variables obeyed a sum-logarithmic distribution that is backpropagated to its observation vector and the number of neurons in the next layer. Multinormal distribution is used to segment the extended observation vector to form a matrix associated with the width of the next layer. This work also proposes an adaptive topic-layer stochastic gradient Riemann (ATL-SGR) Markov chain Monte Carlo (MCMC) inference method to learn its global parameters without heuristic assumptions. The experimental results indicate that DSLMM can extract more probability distribution contained in the brain power map layer by layer, and achieve higher pilot cognition detection accuracy.
ISSN:2168-2267
2168-2275
DOI:10.1109/TCYB.2021.3068300