Bayesian Estimation of Human Impedance and Motion Intention for Human-Robot Collaboration

This article proposes a Bayesian method to acquire the estimation of human impedance and motion intention in a human-robot collaborative task. Combining with the prior knowledge of human stiffness, estimated stiffness obeying Gaussian distribution is obtained by Bayesian estimation, and human motion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2021-04, Vol.51 (4), p.1822-1834
Hauptverfasser: Yu, Xinbo, He, Wei, Li, Yanan, Xue, Chengqian, Li, Jianqiang, Zou, Jianxiao, Yang, Chenguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1834
container_issue 4
container_start_page 1822
container_title IEEE transactions on cybernetics
container_volume 51
creator Yu, Xinbo
He, Wei
Li, Yanan
Xue, Chengqian
Li, Jianqiang
Zou, Jianxiao
Yang, Chenguang
description This article proposes a Bayesian method to acquire the estimation of human impedance and motion intention in a human-robot collaborative task. Combining with the prior knowledge of human stiffness, estimated stiffness obeying Gaussian distribution is obtained by Bayesian estimation, and human motion intention can be also estimated. An adaptive impedance control strategy is employed to track a target impedance model and neural networks are used to compensate for uncertainties in robotic dynamics. Comparative simulation results are carried out to verify the effectiveness of estimation method and emphasize the advantages of the proposed control strategy. The experiment, performed on Baxter robot platform, illustrates a good system performance.
doi_str_mv 10.1109/TCYB.2019.2940276
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCYB_2019_2940276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8879539</ieee_id><sourcerecordid>2308518953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-55831898e76023df9b6d2e48cc4458bef02f331e19ceee049dc6a2115112e2a33</originalsourceid><addsrcrecordid>eNpdkM9LwzAUx4Mobsz9ASJIwYuXzvxsk6Mr0w0mgszDTiFtX6FjbWbTHvbfm65zB3PJ473P--abL0L3BM8Iweplk2znM4qJmlHFMY2jKzSmJJIhpbG4vtRRPEJT53bYH-lbSt6iESMRj7nAY7SdmyO40tTBwrVlZdrS1oEtgmVX-d6qOkBu6gwCU-fBhz1NV3UL9akqbDOA4ZdNbRskdr83qW1OKnfopjB7B9PzPUHfb4tNsgzXn--r5HUdZlzINhRCMuJdQRxhyvJCpVFOgcss436eQoFpwRgBojIAwFzlWWQoIYIQCtQwNkHPg-6hsT8duFZXpcvAO6nBdk5ThqXwL4geffqH7mzX1N6dpgIzrlTMlafIQGWNda6BQh8an0xz1ATrPnrdR6_76PU5er_zeFbu0gryy8Zf0B54GIDS_-IyljL2vhT7BbK0hkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503499749</pqid></control><display><type>article</type><title>Bayesian Estimation of Human Impedance and Motion Intention for Human-Robot Collaboration</title><source>IEEE Electronic Library (IEL)</source><creator>Yu, Xinbo ; He, Wei ; Li, Yanan ; Xue, Chengqian ; Li, Jianqiang ; Zou, Jianxiao ; Yang, Chenguang</creator><creatorcontrib>Yu, Xinbo ; He, Wei ; Li, Yanan ; Xue, Chengqian ; Li, Jianqiang ; Zou, Jianxiao ; Yang, Chenguang</creatorcontrib><description>This article proposes a Bayesian method to acquire the estimation of human impedance and motion intention in a human-robot collaborative task. Combining with the prior knowledge of human stiffness, estimated stiffness obeying Gaussian distribution is obtained by Bayesian estimation, and human motion intention can be also estimated. An adaptive impedance control strategy is employed to track a target impedance model and neural networks are used to compensate for uncertainties in robotic dynamics. Comparative simulation results are carried out to verify the effectiveness of estimation method and emphasize the advantages of the proposed control strategy. The experiment, performed on Baxter robot platform, illustrates a good system performance.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2019.2940276</identifier><identifier>PMID: 31647450</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptive control ; Adaptive impedance control ; Bayes methods ; Bayesian analysis ; Bayesian estimation ; Collaboration ; Dynamics ; Estimation ; Force ; Gaussian distribution ; human impedance ; Human motion ; human motion intention estimation ; Impedance ; Neural networks ; neural networks (NNs) ; Normal distribution ; Robot dynamics ; Robots ; Stiffness ; Task analysis ; Tracking</subject><ispartof>IEEE transactions on cybernetics, 2021-04, Vol.51 (4), p.1822-1834</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-55831898e76023df9b6d2e48cc4458bef02f331e19ceee049dc6a2115112e2a33</citedby><cites>FETCH-LOGICAL-c458t-55831898e76023df9b6d2e48cc4458bef02f331e19ceee049dc6a2115112e2a33</cites><orcidid>0000-0002-1443-2547 ; 0000-0002-8676-8322 ; 0000-0002-8944-9861 ; 0000-0002-2208-962X ; 0000-0001-5255-5559 ; 0000-0002-6788-0634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8879539$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8879539$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31647450$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Xinbo</creatorcontrib><creatorcontrib>He, Wei</creatorcontrib><creatorcontrib>Li, Yanan</creatorcontrib><creatorcontrib>Xue, Chengqian</creatorcontrib><creatorcontrib>Li, Jianqiang</creatorcontrib><creatorcontrib>Zou, Jianxiao</creatorcontrib><creatorcontrib>Yang, Chenguang</creatorcontrib><title>Bayesian Estimation of Human Impedance and Motion Intention for Human-Robot Collaboration</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>This article proposes a Bayesian method to acquire the estimation of human impedance and motion intention in a human-robot collaborative task. Combining with the prior knowledge of human stiffness, estimated stiffness obeying Gaussian distribution is obtained by Bayesian estimation, and human motion intention can be also estimated. An adaptive impedance control strategy is employed to track a target impedance model and neural networks are used to compensate for uncertainties in robotic dynamics. Comparative simulation results are carried out to verify the effectiveness of estimation method and emphasize the advantages of the proposed control strategy. The experiment, performed on Baxter robot platform, illustrates a good system performance.</description><subject>Adaptive control</subject><subject>Adaptive impedance control</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Bayesian estimation</subject><subject>Collaboration</subject><subject>Dynamics</subject><subject>Estimation</subject><subject>Force</subject><subject>Gaussian distribution</subject><subject>human impedance</subject><subject>Human motion</subject><subject>human motion intention estimation</subject><subject>Impedance</subject><subject>Neural networks</subject><subject>neural networks (NNs)</subject><subject>Normal distribution</subject><subject>Robot dynamics</subject><subject>Robots</subject><subject>Stiffness</subject><subject>Task analysis</subject><subject>Tracking</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM9LwzAUx4Mobsz9ASJIwYuXzvxsk6Mr0w0mgszDTiFtX6FjbWbTHvbfm65zB3PJ473P--abL0L3BM8Iweplk2znM4qJmlHFMY2jKzSmJJIhpbG4vtRRPEJT53bYH-lbSt6iESMRj7nAY7SdmyO40tTBwrVlZdrS1oEtgmVX-d6qOkBu6gwCU-fBhz1NV3UL9akqbDOA4ZdNbRskdr83qW1OKnfopjB7B9PzPUHfb4tNsgzXn--r5HUdZlzINhRCMuJdQRxhyvJCpVFOgcss436eQoFpwRgBojIAwFzlWWQoIYIQCtQwNkHPg-6hsT8duFZXpcvAO6nBdk5ThqXwL4geffqH7mzX1N6dpgIzrlTMlafIQGWNda6BQh8an0xz1ATrPnrdR6_76PU5er_zeFbu0gryy8Zf0B54GIDS_-IyljL2vhT7BbK0hkA</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Yu, Xinbo</creator><creator>He, Wei</creator><creator>Li, Yanan</creator><creator>Xue, Chengqian</creator><creator>Li, Jianqiang</creator><creator>Zou, Jianxiao</creator><creator>Yang, Chenguang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1443-2547</orcidid><orcidid>https://orcid.org/0000-0002-8676-8322</orcidid><orcidid>https://orcid.org/0000-0002-8944-9861</orcidid><orcidid>https://orcid.org/0000-0002-2208-962X</orcidid><orcidid>https://orcid.org/0000-0001-5255-5559</orcidid><orcidid>https://orcid.org/0000-0002-6788-0634</orcidid></search><sort><creationdate>20210401</creationdate><title>Bayesian Estimation of Human Impedance and Motion Intention for Human-Robot Collaboration</title><author>Yu, Xinbo ; He, Wei ; Li, Yanan ; Xue, Chengqian ; Li, Jianqiang ; Zou, Jianxiao ; Yang, Chenguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-55831898e76023df9b6d2e48cc4458bef02f331e19ceee049dc6a2115112e2a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive control</topic><topic>Adaptive impedance control</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Bayesian estimation</topic><topic>Collaboration</topic><topic>Dynamics</topic><topic>Estimation</topic><topic>Force</topic><topic>Gaussian distribution</topic><topic>human impedance</topic><topic>Human motion</topic><topic>human motion intention estimation</topic><topic>Impedance</topic><topic>Neural networks</topic><topic>neural networks (NNs)</topic><topic>Normal distribution</topic><topic>Robot dynamics</topic><topic>Robots</topic><topic>Stiffness</topic><topic>Task analysis</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Xinbo</creatorcontrib><creatorcontrib>He, Wei</creatorcontrib><creatorcontrib>Li, Yanan</creatorcontrib><creatorcontrib>Xue, Chengqian</creatorcontrib><creatorcontrib>Li, Jianqiang</creatorcontrib><creatorcontrib>Zou, Jianxiao</creatorcontrib><creatorcontrib>Yang, Chenguang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, Xinbo</au><au>He, Wei</au><au>Li, Yanan</au><au>Xue, Chengqian</au><au>Li, Jianqiang</au><au>Zou, Jianxiao</au><au>Yang, Chenguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Estimation of Human Impedance and Motion Intention for Human-Robot Collaboration</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>51</volume><issue>4</issue><spage>1822</spage><epage>1834</epage><pages>1822-1834</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>This article proposes a Bayesian method to acquire the estimation of human impedance and motion intention in a human-robot collaborative task. Combining with the prior knowledge of human stiffness, estimated stiffness obeying Gaussian distribution is obtained by Bayesian estimation, and human motion intention can be also estimated. An adaptive impedance control strategy is employed to track a target impedance model and neural networks are used to compensate for uncertainties in robotic dynamics. Comparative simulation results are carried out to verify the effectiveness of estimation method and emphasize the advantages of the proposed control strategy. The experiment, performed on Baxter robot platform, illustrates a good system performance.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31647450</pmid><doi>10.1109/TCYB.2019.2940276</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1443-2547</orcidid><orcidid>https://orcid.org/0000-0002-8676-8322</orcidid><orcidid>https://orcid.org/0000-0002-8944-9861</orcidid><orcidid>https://orcid.org/0000-0002-2208-962X</orcidid><orcidid>https://orcid.org/0000-0001-5255-5559</orcidid><orcidid>https://orcid.org/0000-0002-6788-0634</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2021-04, Vol.51 (4), p.1822-1834
issn 2168-2267
2168-2275
language eng
recordid cdi_crossref_primary_10_1109_TCYB_2019_2940276
source IEEE Electronic Library (IEL)
subjects Adaptive control
Adaptive impedance control
Bayes methods
Bayesian analysis
Bayesian estimation
Collaboration
Dynamics
Estimation
Force
Gaussian distribution
human impedance
Human motion
human motion intention estimation
Impedance
Neural networks
neural networks (NNs)
Normal distribution
Robot dynamics
Robots
Stiffness
Task analysis
Tracking
title Bayesian Estimation of Human Impedance and Motion Intention for Human-Robot Collaboration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Estimation%20of%20Human%20Impedance%20and%20Motion%20Intention%20for%20Human-Robot%20Collaboration&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Yu,%20Xinbo&rft.date=2021-04-01&rft.volume=51&rft.issue=4&rft.spage=1822&rft.epage=1834&rft.pages=1822-1834&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2019.2940276&rft_dat=%3Cproquest_RIE%3E2308518953%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503499749&rft_id=info:pmid/31647450&rft_ieee_id=8879539&rfr_iscdi=true