Bayesian Estimation of Human Impedance and Motion Intention for Human-Robot Collaboration

This article proposes a Bayesian method to acquire the estimation of human impedance and motion intention in a human-robot collaborative task. Combining with the prior knowledge of human stiffness, estimated stiffness obeying Gaussian distribution is obtained by Bayesian estimation, and human motion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2021-04, Vol.51 (4), p.1822-1834
Hauptverfasser: Yu, Xinbo, He, Wei, Li, Yanan, Xue, Chengqian, Li, Jianqiang, Zou, Jianxiao, Yang, Chenguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article proposes a Bayesian method to acquire the estimation of human impedance and motion intention in a human-robot collaborative task. Combining with the prior knowledge of human stiffness, estimated stiffness obeying Gaussian distribution is obtained by Bayesian estimation, and human motion intention can be also estimated. An adaptive impedance control strategy is employed to track a target impedance model and neural networks are used to compensate for uncertainties in robotic dynamics. Comparative simulation results are carried out to verify the effectiveness of estimation method and emphasize the advantages of the proposed control strategy. The experiment, performed on Baxter robot platform, illustrates a good system performance.
ISSN:2168-2267
2168-2275
DOI:10.1109/TCYB.2019.2940276