Robust Partial-Nodes-Based State Estimation for Complex Networks Under Deception Attacks

In this paper, the partial-nodes-based state estimators (PNBSEs) are designed for a class of uncertain complex networks subject to finite-distributed delays, stochastic disturbances, as well as randomly occurring deception attacks (RODAs). In consideration of the likely unavailability of the output...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2020-06, Vol.50 (6), p.2793-2802
Hauptverfasser: Hou, Nan, Wang, Zidong, Ho, Daniel W. C., Dong, Hongli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the partial-nodes-based state estimators (PNBSEs) are designed for a class of uncertain complex networks subject to finite-distributed delays, stochastic disturbances, as well as randomly occurring deception attacks (RODAs). In consideration of the likely unavailability of the output signals in harsh environments from certain network nodes, only partial measurements are utilized to accomplish the state estimation task for the addressed complex network with norm-bounded uncertainties in both the network parameters and the inner couplings. The RODAs are taken into account to reflect the compromised data transmissions in cyber security. We aim to derive the gain parameters of the estimators such that the overall estimation error dynamics satisfies the specified security constraint in the simultaneous presence of stochastic disturbances and deception signals. Through intensive stochastic analysis, sufficient conditions are obtained to guarantee the desired security performance for the PNBSEs, based on which the estimator gains are acquired by solving certain matrix inequalities with nonlinear constraints. A simulation study is carried out to testify the security performance of the presented state estimation method.
ISSN:2168-2267
2168-2275
DOI:10.1109/TCYB.2019.2918760