Neural-Network Vector Controller for Permanent-Magnet Synchronous Motor Drives: Simulated and Hardware-Validated Results
This paper focuses on current control in a permanent-magnet synchronous motor (PMSM). This paper has two main objectives: the first objective is to develop a neural-network (NN) vector controller to overcome the decoupling inaccuracy problem associated with the conventional proportional-integral-bas...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2020-07, Vol.50 (7), p.3218-3230 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper focuses on current control in a permanent-magnet synchronous motor (PMSM). This paper has two main objectives: the first objective is to develop a neural-network (NN) vector controller to overcome the decoupling inaccuracy problem associated with the conventional proportional-integral-based vector-control methods. The NN is developed using the full dynamic equation of a PMSM, and trained to implement optimal control based on approximate dynamic programming. The second objective is to evaluate the robust and adaptive performance of the NN controller against that of the conventional standard vector controller under motor parameter variation and dynamic control conditions by: 1) simulating the behavior of a PMSM typically used in realistic electric vehicle applications and 2) building an experimental system for hardware validation as well as combined hardware and simulation evaluation. The results demonstrate that the NN controller outperforms conventional vector controllers in both simulation and hardware implementation. |
---|---|
ISSN: | 2168-2267 2168-2275 |
DOI: | 10.1109/TCYB.2019.2897653 |