Text Image Deblurring Using Kernel Sparsity Prior

Previous methods on text image motion deblurring seldom consider the sparse characteristics of the blur kernel. This paper proposes a new text image motion deblurring method by exploiting the sparse properties of both text image itself and kernel. It incorporates the L 0 -norm for regularizing the b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2020-03, Vol.50 (3), p.997-1008
Hauptverfasser: Fang, Xianyong, Zhou, Qiang, Shen, Jianbing, Jacquemin, Christian, Shao, Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previous methods on text image motion deblurring seldom consider the sparse characteristics of the blur kernel. This paper proposes a new text image motion deblurring method by exploiting the sparse properties of both text image itself and kernel. It incorporates the L 0 -norm for regularizing the blur kernel in the deblurring model, besides the L 0 sparse priors for the text image and its gradient. Such a L 0 -norm-based model is efficiently optimized by half-quadratic splitting coupled with the fast conjugate descent method. To further improve the quality of the recovered kernel, a structure-preserving kernel denoising method is also developed to filter out the noisy pixels, yielding a clean kernel curve. Experimental results show the superiority of the proposed method. The source code and results are available at: https://github.com/shenjianbing/text-image-deblur.
ISSN:2168-2267
2168-2275
DOI:10.1109/TCYB.2018.2876511