Face Sketch-Photo Synthesis and Retrieval Using Sparse Representation

Sketch-photo synthesis plays an important role in sketch-based face photo retrieval and photo-based face sketch retrieval systems. In this paper, we propose an automatic sketch-photo synthesis and retrieval algorithm based on sparse representation. The proposed sketch-photo synthesis method works at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2012-08, Vol.22 (8), p.1213-1226
Hauptverfasser: Gao, Xinbo, Wang, Nannan, Tao, Dacheng, Li, Xuelong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sketch-photo synthesis plays an important role in sketch-based face photo retrieval and photo-based face sketch retrieval systems. In this paper, we propose an automatic sketch-photo synthesis and retrieval algorithm based on sparse representation. The proposed sketch-photo synthesis method works at patch level and is composed of two steps: sparse neighbor selection (SNS) for an initial estimate of the pseudoimage (pseudosketch or pseudophoto) and sparse-representation-based enhancement (SRE) for further improving the quality of the synthesized image. SNS can find closely related neighbors adaptively and then generate an initial estimate for the pseudoimage. In SRE, a coupled sparse representation model is first constructed to learn the mapping between sketch patches and photo patches, and a patch-derivative-based sparse representation method is subsequently applied to enhance the quality of the synthesized photos and sketches. Finally, four retrieval modes, namely, sketch-based, photo-based, pseudosketch-based, and pseudophoto-based retrieval are proposed, and a retrieval algorithm is developed by using sparse representation. Extensive experimental results illustrate the effectiveness of the proposed face sketch-photo synthesis and retrieval algorithms.
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2012.2198090