Crowd Flow Prediction for Social Internet-of-Things Systems Based on the Mobile Network Big Data

Accurate crowd flow prediction has gained increasing importance for the development of social Internet-of-Things (IoT) systems. In this article, we provide an efficient crowd flow prediction for social IoT systems in urban space based on the mobile network big data. In particular, the usage detail r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computational social systems 2022-02, Vol.9 (1), p.267-278
Hauptverfasser: Jiang, Hao, Li, Lixia, Xian, Haoran, Hu, Yulin, Huang, Hehe, Wang, Juzhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate crowd flow prediction has gained increasing importance for the development of social Internet-of-Things (IoT) systems. In this article, we provide an efficient crowd flow prediction for social IoT systems in urban space based on the mobile network big data. In particular, the usage detail records (UDRs) are used in the prediction. The feasibility of using UDRs in the prediction is first analyzed. Then, a graph data model is exploited to record and represent the mobile behavior of users. In particular, we propose to apply the heterogeneous information network (HIN) representing the UDR data and characterize the users' behavior through the embedding methods of HIN. Moreover, an attention-based spatiotemporal graph convolution network with embedded vectors (EA-STGCN) is proposed for the final prediction. Through experimental evaluation, the advantages of the proposed model are shown in comparison to benchmarks.
ISSN:2329-924X
2329-924X
2373-7476
DOI:10.1109/TCSS.2021.3062884