Approximate Multipliers Using Static Segmentation: Error Analysis and Improvements
Approximate multipliers are used in error-tolerant applications, sacrificing the accuracy of results to minimize power or delay. In this paper we investigate approximate multipliers using static segmentation. In these circuits a set of m contiguous bits (a segment of m bits) is extracted from ea...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2022-06, Vol.69 (6), p.2449-2462 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Approximate multipliers are used in error-tolerant applications, sacrificing the accuracy of results to minimize power or delay. In this paper we investigate approximate multipliers using static segmentation. In these circuits a set of m contiguous bits (a segment of m bits) is extracted from each of the two n -bits operand, the two segments are in input to a small m\times m internal multiplier whose output is suitably shifted to obtain the result. We investigate both signed and unsigned multipliers, and for the latter we propose a new segmentation approach. We also present simple and effective correction techniques that can significantly reduce the approximation error with reduced hardware costs. We perform a detailed comparison with previously proposed approximate multipliers, considering a hardware implementation in 28 nm technology. The comparison shows that static segmented multipliers with the proposed correction technique have the desirable characteristic of being on (or close to) the Pareto-optimal frontier for both power vs normalized mean error distance and power vs mean relative error distance trade-off plots. These multipliers, therefore, are promising candidates for applications where their error performance is acceptable. This is confirmed by the results obtained for image processing and image classification applications. |
---|---|
ISSN: | 1549-8328 1558-0806 |
DOI: | 10.1109/TCSI.2022.3152921 |