Homeostatic Fault Tolerance in Spiking Neural Networks: A Dynamic Hardware Perspective

Fault tolerance is a remarkable feature of biological systems and their self-repair capability influence modern electronic systems. In this paper, we propose a novel plastic neural network model, which establishes homeostasis in a spiking neural network. Combined with this plasticity and the inspira...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2018-02, Vol.65 (2), p.687-699
Hauptverfasser: Johnson, Anju P., Junxiu Liu, Millard, Alan G., Karim, Shvan, Tyrrell, Andy M., Harkin, Jim, Timmis, Jon, McDaid, Liam J., Halliday, David M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fault tolerance is a remarkable feature of biological systems and their self-repair capability influence modern electronic systems. In this paper, we propose a novel plastic neural network model, which establishes homeostasis in a spiking neural network. Combined with this plasticity and the inspiration from inhibitory interneurons, we develop a fault-resilient robotic controller implemented on an FPGA establishing obstacle avoidance task. We demonstrate the proposed methodology on a spiking neural network implemented on Xilinx Artix-7 FPGA. The system is able to maintain stable firing (tolerance ±10%) with a loss of up to 75% of the original synaptic inputs to a neuron. Our repair mechanism has minimal hardware overhead with a tuning circuit (repair unit) which consumes only three slices/neuron for implementing a threshold voltage-based homeostatic fault-tolerant unit. The overall architecture has a minimal impact on power consumption and, therefore, supports scalable implementations. This paper opens a novel way of implementing the behavior of natural fault tolerant system in hardware establishing homeostatic self-repair behavior.
ISSN:1549-8328
1558-0806
DOI:10.1109/TCSI.2017.2726763