Analysis and Modeling of Capacitive Power Transfer in Microsystems

As externally powered microsystems become more common, designers need better tools to understand power delivery systems such as non-resonant capacitive coupling. In this paper we present the first general method which allows a designer to easily model power delivery through capacitive coupling. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2012-07, Vol.59 (7), p.1557-1566
Hauptverfasser: Karagozler, M. E., Goldstein, S. C., Ricketts, D. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As externally powered microsystems become more common, designers need better tools to understand power delivery systems such as non-resonant capacitive coupling. In this paper we present the first general method which allows a designer to easily model power delivery through capacitive coupling. The method uses a power iteration technique which allows one to analyze systems when the time to charge the coupling capacitor is longer than a charge cycle, enabling us to analyze a greater range of systems than previously possible. In fact, we are able to model the entire system with an equivalent resistance. We show that our model accurately reproduces both static and dynamic characteristics of the exact solution and that this model is general, in that it is valid for capacitor charge times that are longer as well as shorter than a charge cycle. This model also reveals several regions of operation where different parameters (e.g., capacitance, frequency and series resistance) dominate, allowing the designer to quickly and intuitively understand the design space for capacitive power transfer.
ISSN:1549-8328
1558-0806
DOI:10.1109/TCSI.2011.2177011