Adaptive Safety Control for Constrained Uncertain Robotic Systems: A Neural Network-Based High-Order Control Barrier Function Approach

In this brief, a neural network-based high-order control barrier function (NNHoCBF) is proposed to address the safety control problem of constrained uncertain robotic systems, where the radial basis function-based neural network is introduced to reconstruct uncertain robotic systems. By proving the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2024-10, Vol.71 (10), p.4511-4515
Hauptverfasser: Peng, Jinzhu, Ni, Zhiyao, Wang, Haijing, Yu, Hongshan, Ding, Shuai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this brief, a neural network-based high-order control barrier function (NNHoCBF) is proposed to address the safety control problem of constrained uncertain robotic systems, where the radial basis function-based neural network is introduced to reconstruct uncertain robotic systems. By proving the non-negative nature of NNHoCBFs, Lyapunov-like conditions are obtained to ensure the constraint satisfaction of uncertain robotic systems. Moreover, to ensure the safe tracking control for constrained uncertain robotic systems, a minimum energy quadratic program (QP) with Lyapunov-like conditions is constructed as constraints on nominal control inputs, and the safe tracking controllers of robotic systems are then obtained by solving the minimum energy QP. Consequently, the safety and tracking performances of constrained uncertain robotic systems can be guaranteed simultaneously. Finally, simulation tests on a two-link robotic system are conducted to verify the effectiveness of the proposed controller.
ISSN:1549-7747
1558-3791
DOI:10.1109/TCSII.2024.3404966