Analysis and Modeling of N-Path Circuits Peak Frequency Shift Caused by Switch Parasitics

The N-path circuit serves both as a mixer and as a radio frequency (RF) filter. Certain performance aspects, such as noise, linearity, and out-of-band (OOB) rejection dictate large switches size. However, such increment raises the value of the parasitic RF capacitance, which causes further in-band (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2022-02, Vol.69 (2), p.374-378
Hauptverfasser: Zolkov, Erez, Cohen, Emanuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The N-path circuit serves both as a mixer and as a radio frequency (RF) filter. Certain performance aspects, such as noise, linearity, and out-of-band (OOB) rejection dictate large switches size. However, such increment raises the value of the parasitic RF capacitance, which causes further in-band (IB) loss and peak frequency shift. In this brief, we derive simplified equations for the assessment of the mentioned non-ideal properties, using the novel linear periodically time-variant (LPTV) state-space analysis, by making derivations and approximations based on realistic circuit parameters. We present closed-form equations for the voltage gain peak frequency shift and a revised linear time-invariant (LTI) model for the assessment of S_{11} dip frequency shift.
ISSN:1549-7747
1558-3791
DOI:10.1109/TCSII.2021.3096325