A Hybrid Nine-Level Inverter Topology With Boosting Capability and Reduced Component Count

Nowadays, output voltage boosting gain property along with curtailment in the circuit voltage stress, and component count are considered as the essential topological features for the new multilevel inverter (MLI) circuits. Recognizing the above, a hybrid nine-level inverter topology (HNIT) for DC-AC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2021-01, Vol.68 (1), p.316-320
Hauptverfasser: Naik, Banavath Shiva, Suresh, Y., Venkataramanaiah, J., Panda, Anup Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nowadays, output voltage boosting gain property along with curtailment in the circuit voltage stress, and component count are considered as the essential topological features for the new multilevel inverter (MLI) circuits. Recognizing the above, a hybrid nine-level inverter topology (HNIT) for DC-AC conversion is proposed in this brief. Each phase of the HNIT is designed with only eight semiconductor switches, one diode, and two electrolytic capacitors. Herein, series-parallel and conventional-series techniques are utilized effectively to balance the capacitor voltages. Further, cost and quantitative comparisons are carried among the state-of-art circuits to highlight the supremacy of proposed circuit. Subsequently, the performance of HNIT is verified experimentally with the fundamental switching PWM technique at different load conditions.
ISSN:1549-7747
1558-3791
DOI:10.1109/TCSII.2020.2998496