CMix-NN: Mixed Low-Precision CNN Library for Memory-Constrained Edge Devices
Low-precision integer arithmetic is a necessary ingredient for enabling Deep Learning inference on tiny and resource-constrained IoT edge devices. This brief presents CMix-NN, a flexible open-sourceCMix-NN is available at https://github.com/EEESlab/CMix-NN. mixed low-precision (independent tensors q...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2020-05, Vol.67 (5), p.871-875 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Low-precision integer arithmetic is a necessary ingredient for enabling Deep Learning inference on tiny and resource-constrained IoT edge devices. This brief presents CMix-NN, a flexible open-sourceCMix-NN is available at https://github.com/EEESlab/CMix-NN. mixed low-precision (independent tensors quantization of weight and activations at 8, 4, 2 bits) inference library for low bitwidth Quantized Networks. CMix-NN efficiently supports both Per-Layer and Per-Channel quantization strategies of weights and activations. Thanks to CMix-NN, we deploy on an STM32H7 microcontroller a set of Mobilenet family networks with the largest input resolutions (224×224) and higher accuracies (up to 68% Top1) when compressed with a mixed low precision technique, achieving up to +8% accuracy improvement concerning any other published solution for MCU devices. |
---|---|
ISSN: | 1549-7747 1558-3791 |
DOI: | 10.1109/TCSII.2020.2983648 |