Joint DOA Estimation and Source Signal Tracking With Kalman Filtering and Regularized QRD RLS Algorithm
In this brief, we present a nontraditional approach for estimating and tracking signal direction-of-arrival (DOA) using an array of sensors. The proposed method consists of two stages: in the first stage, the sources modeled by autoregressive (AR) processes are estimated by the celebrated Kalman fil...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2013-01, Vol.60 (1), p.46-50 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 50 |
---|---|
container_issue | 1 |
container_start_page | 46 |
container_title | IEEE transactions on circuits and systems. II, Express briefs |
container_volume | 60 |
creator | Jian-Feng Gu Chan, S. C. Wei-Ping Zhu Swamy, M. N. S. |
description | In this brief, we present a nontraditional approach for estimating and tracking signal direction-of-arrival (DOA) using an array of sensors. The proposed method consists of two stages: in the first stage, the sources modeled by autoregressive (AR) processes are estimated by the celebrated Kalman filter, and in the second stage, the efficient QR-decomposition-based recursive least square (QRD-RLS) technique is employed to estimate the DOAs and AR coefficients in each observed time interval. The AR-modeled sources can provide useful temporal information to handle cases such as the number of sources being larger than the number of antennas. In addition, the symmetric array enables one to transfer a complex-valued nonlinear problem to a real-valued linear one, which can reduce the computational complexity. Simulation results demonstrate the superior performance of the algorithm for estimating and tracking DOA under different scenarios. |
doi_str_mv | 10.1109/TCSII.2012.2234874 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSII_2012_2234874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6473845</ieee_id><sourcerecordid>10_1109_TCSII_2012_2234874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-ff50b9fccded6fb0a2b1a84f95ea10dc4ecb8ef871dbd7070507894c6ef9fffb3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7DxD6TYjhPby6oPCFSqaIpYRo49DoY0QU66gK-noRWruRrpXOkehG4pmVBK1P12lmfZhBHKJozFXAp-hkY0SWQUC0XPh8xVJAQXl-iq6z4IYYrEbISqp9Y3PZ6vp3jR9X6ne982WDcW5-0-GMC5rxpd423Q5tM3FX7z_Tt-1vVON3jp6x7C8B2ADVT7Wgf_Axa_bOZ4s8rxtK7acCB21-jC6bqDm9Mdo9flYjt7jFbrh2w2XUWGpaKPnEtIqZwxFmzqSqJZSbXkTiWgKbGGgyklOCmoLa0ggiRESMVNCk4558p4jNix14S26wK44iscVoXvgpJiUFX8qSoGVcVJ1QG6O0IeAP6BlItY8iT-Bc4NZzs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Joint DOA Estimation and Source Signal Tracking With Kalman Filtering and Regularized QRD RLS Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Jian-Feng Gu ; Chan, S. C. ; Wei-Ping Zhu ; Swamy, M. N. S.</creator><creatorcontrib>Jian-Feng Gu ; Chan, S. C. ; Wei-Ping Zhu ; Swamy, M. N. S.</creatorcontrib><description>In this brief, we present a nontraditional approach for estimating and tracking signal direction-of-arrival (DOA) using an array of sensors. The proposed method consists of two stages: in the first stage, the sources modeled by autoregressive (AR) processes are estimated by the celebrated Kalman filter, and in the second stage, the efficient QR-decomposition-based recursive least square (QRD-RLS) technique is employed to estimate the DOAs and AR coefficients in each observed time interval. The AR-modeled sources can provide useful temporal information to handle cases such as the number of sources being larger than the number of antennas. In addition, the symmetric array enables one to transfer a complex-valued nonlinear problem to a real-valued linear one, which can reduce the computational complexity. Simulation results demonstrate the superior performance of the algorithm for estimating and tracking DOA under different scenarios.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2012.2234874</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arrays ; Autoregressive (AR) model ; direction-of-arrival (DOA) estimation and tracking ; Direction-of-arrival estimation ; Estimation ; Kalman filter (KF) ; Kalman filters ; QR-decomposition ; recursive least square (RLS) ; Sensors ; Target tracking ; Vectors</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2013-01, Vol.60 (1), p.46-50</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-ff50b9fccded6fb0a2b1a84f95ea10dc4ecb8ef871dbd7070507894c6ef9fffb3</citedby><cites>FETCH-LOGICAL-c267t-ff50b9fccded6fb0a2b1a84f95ea10dc4ecb8ef871dbd7070507894c6ef9fffb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6473845$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6473845$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jian-Feng Gu</creatorcontrib><creatorcontrib>Chan, S. C.</creatorcontrib><creatorcontrib>Wei-Ping Zhu</creatorcontrib><creatorcontrib>Swamy, M. N. S.</creatorcontrib><title>Joint DOA Estimation and Source Signal Tracking With Kalman Filtering and Regularized QRD RLS Algorithm</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>In this brief, we present a nontraditional approach for estimating and tracking signal direction-of-arrival (DOA) using an array of sensors. The proposed method consists of two stages: in the first stage, the sources modeled by autoregressive (AR) processes are estimated by the celebrated Kalman filter, and in the second stage, the efficient QR-decomposition-based recursive least square (QRD-RLS) technique is employed to estimate the DOAs and AR coefficients in each observed time interval. The AR-modeled sources can provide useful temporal information to handle cases such as the number of sources being larger than the number of antennas. In addition, the symmetric array enables one to transfer a complex-valued nonlinear problem to a real-valued linear one, which can reduce the computational complexity. Simulation results demonstrate the superior performance of the algorithm for estimating and tracking DOA under different scenarios.</description><subject>Arrays</subject><subject>Autoregressive (AR) model</subject><subject>direction-of-arrival (DOA) estimation and tracking</subject><subject>Direction-of-arrival estimation</subject><subject>Estimation</subject><subject>Kalman filter (KF)</subject><subject>Kalman filters</subject><subject>QR-decomposition</subject><subject>recursive least square (RLS)</subject><subject>Sensors</subject><subject>Target tracking</subject><subject>Vectors</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwA7DxD6TYjhPby6oPCFSqaIpYRo49DoY0QU66gK-noRWruRrpXOkehG4pmVBK1P12lmfZhBHKJozFXAp-hkY0SWQUC0XPh8xVJAQXl-iq6z4IYYrEbISqp9Y3PZ6vp3jR9X6ne982WDcW5-0-GMC5rxpd423Q5tM3FX7z_Tt-1vVON3jp6x7C8B2ADVT7Wgf_Axa_bOZ4s8rxtK7acCB21-jC6bqDm9Mdo9flYjt7jFbrh2w2XUWGpaKPnEtIqZwxFmzqSqJZSbXkTiWgKbGGgyklOCmoLa0ggiRESMVNCk4558p4jNix14S26wK44iscVoXvgpJiUFX8qSoGVcVJ1QG6O0IeAP6BlItY8iT-Bc4NZzs</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Jian-Feng Gu</creator><creator>Chan, S. C.</creator><creator>Wei-Ping Zhu</creator><creator>Swamy, M. N. S.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201301</creationdate><title>Joint DOA Estimation and Source Signal Tracking With Kalman Filtering and Regularized QRD RLS Algorithm</title><author>Jian-Feng Gu ; Chan, S. C. ; Wei-Ping Zhu ; Swamy, M. N. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-ff50b9fccded6fb0a2b1a84f95ea10dc4ecb8ef871dbd7070507894c6ef9fffb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Arrays</topic><topic>Autoregressive (AR) model</topic><topic>direction-of-arrival (DOA) estimation and tracking</topic><topic>Direction-of-arrival estimation</topic><topic>Estimation</topic><topic>Kalman filter (KF)</topic><topic>Kalman filters</topic><topic>QR-decomposition</topic><topic>recursive least square (RLS)</topic><topic>Sensors</topic><topic>Target tracking</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jian-Feng Gu</creatorcontrib><creatorcontrib>Chan, S. C.</creatorcontrib><creatorcontrib>Wei-Ping Zhu</creatorcontrib><creatorcontrib>Swamy, M. N. S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jian-Feng Gu</au><au>Chan, S. C.</au><au>Wei-Ping Zhu</au><au>Swamy, M. N. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint DOA Estimation and Source Signal Tracking With Kalman Filtering and Regularized QRD RLS Algorithm</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2013-01</date><risdate>2013</risdate><volume>60</volume><issue>1</issue><spage>46</spage><epage>50</epage><pages>46-50</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>In this brief, we present a nontraditional approach for estimating and tracking signal direction-of-arrival (DOA) using an array of sensors. The proposed method consists of two stages: in the first stage, the sources modeled by autoregressive (AR) processes are estimated by the celebrated Kalman filter, and in the second stage, the efficient QR-decomposition-based recursive least square (QRD-RLS) technique is employed to estimate the DOAs and AR coefficients in each observed time interval. The AR-modeled sources can provide useful temporal information to handle cases such as the number of sources being larger than the number of antennas. In addition, the symmetric array enables one to transfer a complex-valued nonlinear problem to a real-valued linear one, which can reduce the computational complexity. Simulation results demonstrate the superior performance of the algorithm for estimating and tracking DOA under different scenarios.</abstract><pub>IEEE</pub><doi>10.1109/TCSII.2012.2234874</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-7747 |
ispartof | IEEE transactions on circuits and systems. II, Express briefs, 2013-01, Vol.60 (1), p.46-50 |
issn | 1549-7747 1558-3791 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCSII_2012_2234874 |
source | IEEE Electronic Library (IEL) |
subjects | Arrays Autoregressive (AR) model direction-of-arrival (DOA) estimation and tracking Direction-of-arrival estimation Estimation Kalman filter (KF) Kalman filters QR-decomposition recursive least square (RLS) Sensors Target tracking Vectors |
title | Joint DOA Estimation and Source Signal Tracking With Kalman Filtering and Regularized QRD RLS Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20DOA%20Estimation%20and%20Source%20Signal%20Tracking%20With%20Kalman%20Filtering%20and%20Regularized%20QRD%20RLS%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Jian-Feng%20Gu&rft.date=2013-01&rft.volume=60&rft.issue=1&rft.spage=46&rft.epage=50&rft.pages=46-50&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2012.2234874&rft_dat=%3Ccrossref_RIE%3E10_1109_TCSII_2012_2234874%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6473845&rfr_iscdi=true |