Joint DOA Estimation and Source Signal Tracking With Kalman Filtering and Regularized QRD RLS Algorithm

In this brief, we present a nontraditional approach for estimating and tracking signal direction-of-arrival (DOA) using an array of sensors. The proposed method consists of two stages: in the first stage, the sources modeled by autoregressive (AR) processes are estimated by the celebrated Kalman fil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2013-01, Vol.60 (1), p.46-50
Hauptverfasser: Jian-Feng Gu, Chan, S. C., Wei-Ping Zhu, Swamy, M. N. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50
container_issue 1
container_start_page 46
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 60
creator Jian-Feng Gu
Chan, S. C.
Wei-Ping Zhu
Swamy, M. N. S.
description In this brief, we present a nontraditional approach for estimating and tracking signal direction-of-arrival (DOA) using an array of sensors. The proposed method consists of two stages: in the first stage, the sources modeled by autoregressive (AR) processes are estimated by the celebrated Kalman filter, and in the second stage, the efficient QR-decomposition-based recursive least square (QRD-RLS) technique is employed to estimate the DOAs and AR coefficients in each observed time interval. The AR-modeled sources can provide useful temporal information to handle cases such as the number of sources being larger than the number of antennas. In addition, the symmetric array enables one to transfer a complex-valued nonlinear problem to a real-valued linear one, which can reduce the computational complexity. Simulation results demonstrate the superior performance of the algorithm for estimating and tracking DOA under different scenarios.
doi_str_mv 10.1109/TCSII.2012.2234874
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSII_2012_2234874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6473845</ieee_id><sourcerecordid>10_1109_TCSII_2012_2234874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-ff50b9fccded6fb0a2b1a84f95ea10dc4ecb8ef871dbd7070507894c6ef9fffb3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7DxD6TYjhPby6oPCFSqaIpYRo49DoY0QU66gK-noRWruRrpXOkehG4pmVBK1P12lmfZhBHKJozFXAp-hkY0SWQUC0XPh8xVJAQXl-iq6z4IYYrEbISqp9Y3PZ6vp3jR9X6ne982WDcW5-0-GMC5rxpd423Q5tM3FX7z_Tt-1vVON3jp6x7C8B2ADVT7Wgf_Axa_bOZ4s8rxtK7acCB21-jC6bqDm9Mdo9flYjt7jFbrh2w2XUWGpaKPnEtIqZwxFmzqSqJZSbXkTiWgKbGGgyklOCmoLa0ggiRESMVNCk4558p4jNix14S26wK44iscVoXvgpJiUFX8qSoGVcVJ1QG6O0IeAP6BlItY8iT-Bc4NZzs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Joint DOA Estimation and Source Signal Tracking With Kalman Filtering and Regularized QRD RLS Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Jian-Feng Gu ; Chan, S. C. ; Wei-Ping Zhu ; Swamy, M. N. S.</creator><creatorcontrib>Jian-Feng Gu ; Chan, S. C. ; Wei-Ping Zhu ; Swamy, M. N. S.</creatorcontrib><description>In this brief, we present a nontraditional approach for estimating and tracking signal direction-of-arrival (DOA) using an array of sensors. The proposed method consists of two stages: in the first stage, the sources modeled by autoregressive (AR) processes are estimated by the celebrated Kalman filter, and in the second stage, the efficient QR-decomposition-based recursive least square (QRD-RLS) technique is employed to estimate the DOAs and AR coefficients in each observed time interval. The AR-modeled sources can provide useful temporal information to handle cases such as the number of sources being larger than the number of antennas. In addition, the symmetric array enables one to transfer a complex-valued nonlinear problem to a real-valued linear one, which can reduce the computational complexity. Simulation results demonstrate the superior performance of the algorithm for estimating and tracking DOA under different scenarios.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2012.2234874</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arrays ; Autoregressive (AR) model ; direction-of-arrival (DOA) estimation and tracking ; Direction-of-arrival estimation ; Estimation ; Kalman filter (KF) ; Kalman filters ; QR-decomposition ; recursive least square (RLS) ; Sensors ; Target tracking ; Vectors</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2013-01, Vol.60 (1), p.46-50</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-ff50b9fccded6fb0a2b1a84f95ea10dc4ecb8ef871dbd7070507894c6ef9fffb3</citedby><cites>FETCH-LOGICAL-c267t-ff50b9fccded6fb0a2b1a84f95ea10dc4ecb8ef871dbd7070507894c6ef9fffb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6473845$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6473845$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jian-Feng Gu</creatorcontrib><creatorcontrib>Chan, S. C.</creatorcontrib><creatorcontrib>Wei-Ping Zhu</creatorcontrib><creatorcontrib>Swamy, M. N. S.</creatorcontrib><title>Joint DOA Estimation and Source Signal Tracking With Kalman Filtering and Regularized QRD RLS Algorithm</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>In this brief, we present a nontraditional approach for estimating and tracking signal direction-of-arrival (DOA) using an array of sensors. The proposed method consists of two stages: in the first stage, the sources modeled by autoregressive (AR) processes are estimated by the celebrated Kalman filter, and in the second stage, the efficient QR-decomposition-based recursive least square (QRD-RLS) technique is employed to estimate the DOAs and AR coefficients in each observed time interval. The AR-modeled sources can provide useful temporal information to handle cases such as the number of sources being larger than the number of antennas. In addition, the symmetric array enables one to transfer a complex-valued nonlinear problem to a real-valued linear one, which can reduce the computational complexity. Simulation results demonstrate the superior performance of the algorithm for estimating and tracking DOA under different scenarios.</description><subject>Arrays</subject><subject>Autoregressive (AR) model</subject><subject>direction-of-arrival (DOA) estimation and tracking</subject><subject>Direction-of-arrival estimation</subject><subject>Estimation</subject><subject>Kalman filter (KF)</subject><subject>Kalman filters</subject><subject>QR-decomposition</subject><subject>recursive least square (RLS)</subject><subject>Sensors</subject><subject>Target tracking</subject><subject>Vectors</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwA7DxD6TYjhPby6oPCFSqaIpYRo49DoY0QU66gK-noRWruRrpXOkehG4pmVBK1P12lmfZhBHKJozFXAp-hkY0SWQUC0XPh8xVJAQXl-iq6z4IYYrEbISqp9Y3PZ6vp3jR9X6ne982WDcW5-0-GMC5rxpd423Q5tM3FX7z_Tt-1vVON3jp6x7C8B2ADVT7Wgf_Axa_bOZ4s8rxtK7acCB21-jC6bqDm9Mdo9flYjt7jFbrh2w2XUWGpaKPnEtIqZwxFmzqSqJZSbXkTiWgKbGGgyklOCmoLa0ggiRESMVNCk4558p4jNix14S26wK44iscVoXvgpJiUFX8qSoGVcVJ1QG6O0IeAP6BlItY8iT-Bc4NZzs</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Jian-Feng Gu</creator><creator>Chan, S. C.</creator><creator>Wei-Ping Zhu</creator><creator>Swamy, M. N. S.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201301</creationdate><title>Joint DOA Estimation and Source Signal Tracking With Kalman Filtering and Regularized QRD RLS Algorithm</title><author>Jian-Feng Gu ; Chan, S. C. ; Wei-Ping Zhu ; Swamy, M. N. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-ff50b9fccded6fb0a2b1a84f95ea10dc4ecb8ef871dbd7070507894c6ef9fffb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Arrays</topic><topic>Autoregressive (AR) model</topic><topic>direction-of-arrival (DOA) estimation and tracking</topic><topic>Direction-of-arrival estimation</topic><topic>Estimation</topic><topic>Kalman filter (KF)</topic><topic>Kalman filters</topic><topic>QR-decomposition</topic><topic>recursive least square (RLS)</topic><topic>Sensors</topic><topic>Target tracking</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jian-Feng Gu</creatorcontrib><creatorcontrib>Chan, S. C.</creatorcontrib><creatorcontrib>Wei-Ping Zhu</creatorcontrib><creatorcontrib>Swamy, M. N. S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jian-Feng Gu</au><au>Chan, S. C.</au><au>Wei-Ping Zhu</au><au>Swamy, M. N. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint DOA Estimation and Source Signal Tracking With Kalman Filtering and Regularized QRD RLS Algorithm</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2013-01</date><risdate>2013</risdate><volume>60</volume><issue>1</issue><spage>46</spage><epage>50</epage><pages>46-50</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>In this brief, we present a nontraditional approach for estimating and tracking signal direction-of-arrival (DOA) using an array of sensors. The proposed method consists of two stages: in the first stage, the sources modeled by autoregressive (AR) processes are estimated by the celebrated Kalman filter, and in the second stage, the efficient QR-decomposition-based recursive least square (QRD-RLS) technique is employed to estimate the DOAs and AR coefficients in each observed time interval. The AR-modeled sources can provide useful temporal information to handle cases such as the number of sources being larger than the number of antennas. In addition, the symmetric array enables one to transfer a complex-valued nonlinear problem to a real-valued linear one, which can reduce the computational complexity. Simulation results demonstrate the superior performance of the algorithm for estimating and tracking DOA under different scenarios.</abstract><pub>IEEE</pub><doi>10.1109/TCSII.2012.2234874</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2013-01, Vol.60 (1), p.46-50
issn 1549-7747
1558-3791
language eng
recordid cdi_crossref_primary_10_1109_TCSII_2012_2234874
source IEEE Electronic Library (IEL)
subjects Arrays
Autoregressive (AR) model
direction-of-arrival (DOA) estimation and tracking
Direction-of-arrival estimation
Estimation
Kalman filter (KF)
Kalman filters
QR-decomposition
recursive least square (RLS)
Sensors
Target tracking
Vectors
title Joint DOA Estimation and Source Signal Tracking With Kalman Filtering and Regularized QRD RLS Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20DOA%20Estimation%20and%20Source%20Signal%20Tracking%20With%20Kalman%20Filtering%20and%20Regularized%20QRD%20RLS%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Jian-Feng%20Gu&rft.date=2013-01&rft.volume=60&rft.issue=1&rft.spage=46&rft.epage=50&rft.pages=46-50&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2012.2234874&rft_dat=%3Ccrossref_RIE%3E10_1109_TCSII_2012_2234874%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6473845&rfr_iscdi=true