Joint DOA Estimation and Source Signal Tracking With Kalman Filtering and Regularized QRD RLS Algorithm

In this brief, we present a nontraditional approach for estimating and tracking signal direction-of-arrival (DOA) using an array of sensors. The proposed method consists of two stages: in the first stage, the sources modeled by autoregressive (AR) processes are estimated by the celebrated Kalman fil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2013-01, Vol.60 (1), p.46-50
Hauptverfasser: Jian-Feng Gu, Chan, S. C., Wei-Ping Zhu, Swamy, M. N. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this brief, we present a nontraditional approach for estimating and tracking signal direction-of-arrival (DOA) using an array of sensors. The proposed method consists of two stages: in the first stage, the sources modeled by autoregressive (AR) processes are estimated by the celebrated Kalman filter, and in the second stage, the efficient QR-decomposition-based recursive least square (QRD-RLS) technique is employed to estimate the DOAs and AR coefficients in each observed time interval. The AR-modeled sources can provide useful temporal information to handle cases such as the number of sources being larger than the number of antennas. In addition, the symmetric array enables one to transfer a complex-valued nonlinear problem to a real-valued linear one, which can reduce the computational complexity. Simulation results demonstrate the superior performance of the algorithm for estimating and tracking DOA under different scenarios.
ISSN:1549-7747
1558-3791
DOI:10.1109/TCSII.2012.2234874