Multimachine Flexible Manufacturing Cell Analysis Using a Markov Chain-Based Approach

In this paper, a stochastic model is developed to analyze the performance of a flexible manufacturing cell (FMC). The FMC considered in this paper consists of a single conveyor, a single robot, and one or more machine(s). The conveyor belt delivers the working part to the robot, which loads it onto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2015-03, Vol.5 (3), p.439-446
Hauptverfasser: Hamasha, Mohammad M., Alazzam, Azmi, Hamasha, Sad, Aqlan, Faisal, Almeanazel, Osama, Khasawneh, Mohammad T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a stochastic model is developed to analyze the performance of a flexible manufacturing cell (FMC). The FMC considered in this paper consists of a single conveyor, a single robot, and one or more machine(s). The conveyor belt delivers the working part to the robot, which loads it onto the machine. A Markov chain model is constructed for one-machine and two-machine FMCs, after which the model is generalized to an FMC with n machines. Most importantly, the model provides an estimate of the overall machine utilization and production rate for the FMC under consideration and also illustrates the effect of different operational factors on machine utilization and production rate. The results indicated that the overall machine utilization increases with conveyor belt and robot delivery rates and decreases with machine rate, as expected. However, this decrease or the increase in the overall machine utilization is sharp at low levels of each parameter (e.g., conveyor belt delivery and robot loading), but it gradually stabilizes at higher levels of the parameters. Finally, the production rate increases sharply at low levels of each parameter and gradually stabilizes at higher levels.
ISSN:2156-3950
2156-3985
DOI:10.1109/TCPMT.2015.2394232