Joint Frame Detection and Channel Parameter Estimation for OOK Free-Space Optical Communications
We consider a free-space optical (FSO) communication link for packet-based transmissions over a turbulence fading channel. The modulation format is on-off keying (OOK) and a unique-word (UW) composed by a known synch pattern is periodically inserted in the data stream to identify the start of frame....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2022-07, Vol.70 (7), p.4731-4744 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a free-space optical (FSO) communication link for packet-based transmissions over a turbulence fading channel. The modulation format is on-off keying (OOK) and a unique-word (UW) composed by a known synch pattern is periodically inserted in the data stream to identify the start of frame. Since an avalanche photo-diode (APD) is used for direct detection of the OOK symbols, the photocurrent signal provided by the APD is plagued by a mixture of thermal and shot noise with signal-dependent power. Our goal is the detection of the UW position in the received stream, along with the estimation of the unknown channel attenuation and noise variances. The aforementioned problem has recently been studied by ignoring any information conveyed by data symbols surrounding the UW. In this work, further investigation is conducted in order to determine the maximum likelihood (ML) solution that, in addition to the UW, exploits all the information-bearing symbols belonging to the observation window. The relevant Cramér-Rao bound (CRB) is also evaluated to establish the ultimate accuracy achievable in the estimation process. Since the true ML estimator leads to a computationally intractable multi-dimensional optimization problem, we develop suitable approximations that enable accurate frame synchronization with affordable complexity. We also present an iterative solution to refine the channel and noise power estimates provided by the UW detection procedure. Numerical simulations demonstrate the superiority of the proposed synchronization and estimation schemes with respect to existing alternatives. |
---|---|
ISSN: | 0090-6778 1558-0857 |
DOI: | 10.1109/TCOMM.2022.3177768 |